Embedded Systems Design - Embedded.com http://www.embedded.com/design/multicore/211...

What will next generation embedded design look like?

In future years, the ever-changing embedded systems design environment will continue to evolve.
How must the develo pment environment change to accommodate it? Ata Khan of Cypress has a few
ideas.

By Ata Khan, Cypress Semiconductor
Embedded.com
(10/21/08, 01:25:00 AM EDT)

Embedded processors are everywhere. Almost everything powered by electricity has an embedded processor for the
contra or processing functions (or both) required by the application. The prdiferation and the ever-increasing
sophistication of these processars over more than three decades have been driven by decreasing costs and
increasing processing and controlling power.

Moore's law, com petitive pressure, and rapid innovation in consumer devices have led to everyday devices
incorporating machines that have the same processing power that mainframe enterprise com puters delivered not so
long ago.

Much of this innovation has been driven by human consumer behavior that, after a while, tends toignore linear
improvements but responds strongly to exponential advances, thus driving the push to more powerful systems with
more features and more complexity. As a consequence, it is now common for consumer devices to incorpor ate
embedded processors with processing power in triple-digit MIPS,

Gigabytes of storage, and access to all kinds of conmonly used communication protocols is not a problem with
respect to the hardware available (the processors themselves) nor to the software development too's, operating
systems, or compilers. In addition, the embedded designers themselves have the capacity to understand the

evaving hardware and software and to use them to build marketable applications.

Rather, the problems that com plexity brings are related to the fact that human design bandwidth has not grown at
the same rate as processing power. As a result, ever-increasing complexity brings inevitable delays and simply
adding people is nat the answer as many well-known books on productivity (The Mythical Man-Month is perhaps the
best known) have shown.

The current situation

Designing a modern embedded system is a complex multi-tiered activity. First comes the need to define the
behavior required of the system by its potential customers and to understand the com petitive landscape and how to
leverage it.

Next comes determining if the needed com petence exists in the organization, and reducing/relating the system
specifications to the software, tods, processors, and cther com ponents required. All of these major tasks need to be
completed before the actual task of designing hardware and writing code can begin.

Once all the background work to get a design underway is done, the hard, repetitive work of hardware and software
design begins. Typically, embedded designs consist of selections from three major categories of blocks: Processing,
digital (peripherals and logic), and analog (the physical interface for sensing and contraling).

A system is generally assembled of various com ponents from the three major categories based on the hardware
interfaces required by the system, and the software must be built to make the system perform the processing and
contra functions required. Once a particular design is "set" in software and hardware, it is difficult, costly, and
time-consuming to change because of interactions between software and hardware within the classes of blocks.

Embedded designers need to get to market ahead of their com petitors. To have an early market advantage and
re-use their investments in knowledge and toos as much as possible, their selected architectures and design
platform s have to be flexible and adaptable.

These toodls and com ponents must enable significant last minute changes (indeed, continuous changes), as well as
be able to utilize industry standard eco-systems to take advantage of a large developer community and standard
todls.

1of5 10/27/2008 04:44 PM



Embedded Systems Design - Embedded.com http://www.embedded.com/design/multicore/211...

Com pounding these challenges is the fact that the longer the design cycle, the higher the probability of the design
requirements changing, which, of course, makes the design cycle even longer, and so on. Rapid product
developm ent therefore not only provides a financial advantage but reduces uncertainty and offers the possibility of
earlier customer feedback and market leadership.

A new way of designing

Given that a typical embedded system is a comhbination of processing and digital and analog blocks, and that the
embedded system consists of the whae of the combining these blocks with the appropriate software, developers
need to ask the fdlowing key questions:

1. How do we make sure we're speeding up the total design process? Amdahl's law, paraphrased, states
that it is the sequential portion of the total processes that determine the overall potential improvem ent. As applied
here, some basic processes must change.

2. How do we accelerate the learning phases in order to converge more quickly on the marketable
design? Experience teaches us that it's far better to gothrough a process of stepwise refinement and convergence
than to push system testing out tothe end. A cordlary of this is that the earlier bugs are found, the cheaper they
are to address.

3. How do we reduce overall design effort? Put anather way, which parts of the system can be provided for in
terms of reusable modules or generated intelligently to save time and effort.

4. How do we allow for rapid change in all phases of the design process? Design changes made earlier
in the design process are easy toimplement. Because of interdependencies across a design, it's nat at all easy to
make rapid changes once a design has firmed up.

5. How do we allow for updating both hardware and software in the field? It's relatively easy, given that
some means of communications exist, to update embedded software. Additionally software updates have become
quite conmon and are accepted by many consumers as part of the ownership experience of certain electronic
devices. The difficulty is in updating hardware functionality as well. For example, what if the behavior of a certain
state machine needs to be changed, or if the machine has to perform different tasks at different times?

6. How do we allow for standard tools to be used? As compilers and debuggers evave over time, there is
much learning and improvement (and at many users' expense) embodied in standard toos. New embedded design
techniques must support the use of industry standard tools to maximize improvement gains while minimizing
designer learning investment.

7. Are we providing a Platform? It is essential that a scalable platform, in terms of well-defined hardware and
software architectural features, be provided sothat designs may be scaled, depending upon the application, and
previous efforts can be reused (whether hardware or software).

The ideal embedded platform would therefore have a basic functional structure that is highly flexible and
dynamically modifiable. It would also autom ate all steps of the development cycle other than creating the code the
embedded systems designer develops for the particular application.

The architecture would be highly scalable to support reusability of knowledge and tods and be based on the use of
standard development tools supported by a large ecosystem. In addition, it would incorporate system-level
integration and low power and size by being incorporated in silicon built using advanced processes so as tooptimize
value to the customer and reduce overall power consum ption.

A new design flow

Such an architecture calls for an approach vastly different from those employed in building an em bedded design
using microcontralers with fixed functionality and external com ponents and developing software and firmware
manually. This design approach would be based on an integrated em bedded solution with well-defined hardware and
software.

The hardware would consist of a scalable silicon platform consisting of a processing subsystem (including memory);
an analog subsystem consisting of various functional blocks and commonly used fixed-function peripherals; and
programmable digital blocks, all connectable via a true switched fabric.

20f5 10/27/2008 04:44 PM



Embedded Systems Design - Embedded.com http://www.embedded.com/design/multicore/211...

The software would consist of a developm ent environm ent which, starting with a blank canvas, allows the user to
construct a com plete system consisting of:

Commonly used peripherals

Serial Communication Blocks

Standard Analog blocks

Boolean primitives

Hierarchically created com ponents (in ather words, created by the user)

User-created RTL

The software too would embody several complex functions:

A blank canvas for the user to place and connect com ponents from the list above.

A comprehensive list of conmon prebuilt configurable com ponents for users to select from and place on the canvas

The ability to place Bodean primitives, create com ponents embodying cther functions, and specify the behavior of
com ponents via RTL.

Fixed-function and/or program mable resources that would be selected as required.

Synthesis of user RTL, placement of com ponents in the design and fitting functionality to programmable digital logic
resources.

Placing and routing com ponents on the silicon platform using a switched fabric including connections to the user's
choice of I/O pins.

Generating APIs (including APIs for user-defined com ponents) and device drivers for prebuilt com ponents. APIs
created for the user-defined com ponents would allow passing of param eters to constituent blocks.

Allowing the functionality of blocks to be dynamically reconfigured based on software commands, if so required.
Generate datasheets for com ponent blocks and the chip-level entity.

Once all the above are completed, the user would then be able to add application code, working with the compilers
and debuggers of his choice, tothe now-optimized device. This process may be, simplistically, represented in a
flow-chart in Figure 1.

3of5 10/27/2008 04:44 PM



Embedded Systems Design - Embedded.com http://www.embedded.com/design/multicore/211...

A PSoC design flow.
Start with blank canvas

Pick and place pre-built blacks fram merws.

Conuruct custom compenents with blecks and//or BTL
Connect components io soch other

Connect components bo clocking system, DMA,
inkerrupd, pins

Change/add/ adapt lunchionalily as needed

E 3

Figure 1

View the full-size image

Some examples of configuring various subsystems are shown below.

Clocking: The user is given the fdlowing menu to select clock sources from. Selection of a clock source is as easy
as selecting and clicking; all connections on-chip, contra register set-up, and initial clock configuration is done
autom atically.

Interrupts: An ISR (Interrupt Service Routine) editor allows any digital signal to be connected to an interrupt i nput.
Such todls would allow assigning a particular Interrupt priority and vector num ber to a signal.

DMA: DMA is ancther example of a global resource (like clocking and interrupts) that many blocks may choose to
use (in other words, it is upthe user). The DMA editor would show all peripherals connected to the DMA request
inputs and will allow priority settings so as to guarantee optimum throughput for all its clients.

What does it take to do this?

In our Programmable SoC architecture, Cypress has implemented a precursor of this new design flow.
Experience gathered over several years of implementing and refining that flow with the help of thousands of
customers has provided invaluable insight in the new directions the design flow can take. A new embedded design
flow such as this cannct be defined in one area. It must encom pass the fdlowing elements:

1. A Silicon platform that can be scalable and reusable in terms of both hardware and software.

2. A Software development environm ent that autom ates com ponent selection and generation as much as possible
with the goal of creating software interfaces (APIs) for all customer-specified blocks so that designers can focus on
developing their value-added application code.

3. The use of standard tods and debuggers. In this way, designers can leverage reusahbility and take advantage of
the learning curve that standard toos have benefited from, as well as tap intothe large ecosystems that grow
around industry standard todls.

Ata R. Khan, vice president of technical staff at Cypress Semiconductor Corp., is responsible for strategic
marketing and architecture for new Programmable System-on-Chip products. He joined Cypress in November 2006
from NXP (formerly Philips Semiconductors). Ata has an MSEE degree from UC Berkeley, an MBA from the
University of Santa Clara, and a BSEE from the NED Engineering University.

4 0f 5 10/27/2008 04:44 PM



Embedded Systems Design - Embedded.com http://www.embedded.com/design/multicore/211...

Please |ogin or register here to post a comment

50f5 10/27/2008 04:44 PM



