

Redes de Comunicação em Ambientes Industriais Aula 10

Luís Almeida

Ida@det.ua.pt

Electronic Systems Lab-IEETA / DET Universidade de Aveiro Aveiro, Portugal

RCAI 2005/2006

In the previous episode ...

✓ WorldFIP

- IEC standard 61158, type 7 (2000)
- Typical in train control systems
- Periodic and aperiodic traffic
- Producer/Distributer/Consumer cooperation model
- Table based scheduling (BAT)
 - any scheduling policy possible
 - ✓ BAT size may be a problem (LCM)

In the previous episode ...

- Zero Data temporal validity (promptness and refreshness)
- Aperiodic requests handled in a shared dynamic window
 - ✓ Use the time left by periodic messages
 - Signalisation of aperiodic requests piggybacked in periodic messages
 - Pooled by the Distributor node
 - WCRT computation possible (dead interval + asynchronous busy window)

PROFIBUS PROcess FleidBUS

www.profibus.com

- Created in the late 80's by Siemens, in Germany
- Aims at process control and factory automation
- ✓ DIN standard 19245 1 to 19245 3 (90)
- CENELEC standard EN50170,vol.2 (96)
- IEC standard 61158, type 3 (2000)
- Z Dominant protocol in factory automation !

Broadcast serial bus

- Asynchronous transmission based on UARTs
- Transmission rates up to 12 Mbit/s over RS-485(-IS) on twisted pair, coaxial cable, optical fiber, power cable
- Maximum Length: 200m @ 1.5Mbit/s, 1.2km @ 93.75kbit/s. Extendable by repeaters
- Max. number of nodes 127 (32 masters)

- Two main application profiles:
 - PROFIBUS / FMS Fieldbus Message Specification
 - **PROFIBUS / DP** Decentralised Peripherals
- Z Data payload between 0 and 246 bytes
- Direct-addressing (1 byte, possibly extended)
- Hybrid bus access control
 - **Token-passing** among masters
 - Master-Slave in each individual data transaction

General architecture

Z Data Link services:

Main data transfer services:

- SDA Send Data with Acknowledge
- ✓ SDN Send Data with No acknowledge
- ✓ SRD Send and Request Data
- CSRD Cyclic Send and Request Data

Zwo priority levels!

∠ Data Link frames:

	bytes										
	SD1	DA	SA	FC	FCS	ED			SC		
	a) Fixe	d lengt) Short acknowledge	ement fi	ame						
	SD3	DA	SA	FC	Data (8 Bytes)			FCS	ED		
c) Fixed length frame w/ data field											
	SD2	LE	LEr	SD2	DA	SA	FC	Da	ta (max 246 Bytes)	FCS	ED

d) Variable data field length frame

e) Token frame

(figure by L. Ferreira, 2005)

Z Data Link services:

Main timings:

 \swarrow Idle Time (T_{ID}) – stations reaction time (turnaround)

 \measuredangle Slot Time (T_{SL}) – timeout for detection of errors

Koken management:

RCAI 2005/2006

Traffic schedulabilty analysis:

Requires determining the worst ase conditions

Late arrival of the token

(other stations used it as much as possible)

✓ Token holding time overrun

(transactions started just before ending the holding time)

High priority traffic ready for transmission

(highest interference)

For single master PROFIBUS / DP the analysis is similar to WorldFIP

(the token mechanism is unused)

K Traffic pattern under maximum load:

Equal distribution of bandwidth among N nodes

 \swarrow Intervals of bus inaccessibility =~ TTR*(N 1)

TTP Time-Triggered Protocol (TTP/C – for SAE class C) www.tttech.com

- Created around 1990 within the MARS project in the Technical University of Vienna
- Aims at safety-critical applications
- Considers an architecture with nodes integrated in fault-tolerant units (FTUs), interconnected by a replicated bus
- Includes support for prompt error detection and consistency checks as well as membership and clock synchronization services.

Multi-master, broadcast, serial bus

- Transmission rate of 0.5, 1, 2 Mbit/s with MFM (modified frequency modulation) bit encoding
- Higher tx rates with Ethernet PHY (e.g. 25Mbit/s)
- Max. number of nodes is 64 (possibly larger if some share the access to the network)
- CNI based on Dual-port RAM

Network and nodes architecture

- TDMA access scheme with one slot allocated per node and per round
- The periodic sequence of slots is a TDMA round (typical values 1-10ms)
- In each slot the respective node may send one frame (up to 240 bytes)
- Each frame may contain several messages

- All message transmission instants are stored in a distributed static table, the MEDL
- The messages cycle may span over several TDMA rounds. It is called the Cluster Cycle
- The Cluster Cycle may have up to 512 slots
- Up to 30 modes can be pre-programmed in the MEDL

TDMA round and Cluster Cycle

TDMA round and Cluster Cycle

Cluster cycle

Frame structure

 I-Frame: Protocol information frame (carries the C state)
C-State: Controller state information (clock, MEDL position, membership view)
N-Frame: Normal data frame (carries application data but CRC is calculated together with C state – prompt detection of inconsistent states)

Protocol overhead per frame: 4 bits header, 3 bytes CRC

RCAI 2005/2006

Frame durations

- Notice that frames are transmitted without addresses. Messages are identified by the respective transmission time instant.
- This results in a high protocol efficiency
- Total transmitted bits:
 - SOF(3) + header(4) + data + CRC(24)

✓ Total slot size:

transmitted bits + IFG (10-100?s)

Z Data efficiency

Per transaction (frame)

tx_rate=500Kbit/s, IFG=20?s, Data bits=16, Data_eff=28% tx_rate=500Kbit/s, IFG=20?s, Data bits=64, Data_eff=61% tx_rate=500Kbit/s, IFG=20?s, Data bits=640, Data_eff=94% tx_rate=2Mbit/s, IFG=20?s, Data bits=640, Data_eff=90%

Efficiency decreases with increasing tx rate because of the IFG. Higher efficiency requires shorter IFG (better clock sync)

Schedulability analysis

- TTP/C is table based and, as for WorldFIP, schedulability is implicitly verified when building the schedule table (cluster design).
- An important aspect is that different nodes access the bus in exclusive slots and thus, do not interfere.
- Thus, schedulability can be tested separately for each node

Schedulability analysis

- The analysis for TTP/C can use the same techniques as for WorldFIP:
 - The messages in a slot can be considered as messages in one Elementary Cycle (EC)
 - The duration of the slot can be considered as a periodic phase shorter than the EC
 - The TDMA round can be considered as the EC
 - The Cluster Cycle can be considered as the Macro Cycle
 - Inserted idle-time must be considered because of the strict isolation between slots in the TDMA round

Schedulability analysis

Mapping the Cluster Cycle onto a WorldFIP BAT for each node (just to illustrate equivalence of analysis)

RCAI 2005/2006

PROFIBUS

80's by Siemens, aims Process control and factory automation

Standards DIN/CENELEC/IEC

Broadcast serial bus

- ✓ asynchronous transmission based on UARTs,
- ✓ transmission rates up to 12 Mbit/s
- Max. length: 200m @ 1.5Mbit/s, 1.2km @ 93.75kbit/s. Extendable by repeaters

Max. number of nodes 127 (32 masters)

RCAI 2005/2006

- ✓ Two main application profiles:
 - PROFIBUS / FMS Fieldbus Message Specification
 - PROFIBUS / DP Decentralised Peripherals
- Hybrid bus access control
 - Token-passing among masters, Master-Slave in each individual data transactions
- DLL services
 - SDA Send Data with Acknowledge
 - SDN Send Data with No acknowledge
 - SRD Send and Request Data
 - CSRD Cyclic Send and Request Data

TTP/C

- 1990's in the Technical University of Vienna
- Safety-critical applications (nodes integrated in fault-tolerant units (FTUs), interconnected by a replicated bus)
- Prompt error detection and consistency checks, membership and clock synchronization services
- Multi-master, broadcast, serial bus
- Several tx rates (e.g. 0.5Mb/s with MFM to 25Mb/s on Ethernet PHY)
- ✓ Up to 64 nodes, CNI based on Dual-port RAM
- TDMA access scheme with one slot allocated per node and per round

- In each slot nodes may send one frame (up to 240 bytes). Each frame may contain several messages.
- All message transmission instants are stored in a distributed static table (MEDL). The messages cycle may span over several TDMA rounds (Cluster Cycle).
- ✓ Frames:
 - I-Frame: Protocol information frame (carries the C-state / Controller state information: clock, MEDL position, membership view)
 - <u>N-Frame</u>: Normal data frame
- TTP/C is table based (schedulability is implicitly verified when building the schedule table).
- An important aspect is that different nodes access the bus in exclusive slots and thus, do not interfere.