

Redes de Comunicação em Ambientes Industriais Aula 5

Luís Almeida Ida@det.ua.pt

Electronic Systems Lab-IEETA / DET Universidade de Aveiro Aveiro, Portugal

RCAI 2005/2006

In the previous episode ...

- Transmission control can be external or autonomous
- ✓ TT networks with autonomous control require judicious use of relative phase to avoid high delays and jitter → Time-triggered architecture
- ET networks are inherently flexible at run-time
- TT networks are typically static but can use multiple modes or on-line scheduling of the periodic traffic

In the previous episode ...

- The OSI 7 layers reference model imposes too much overhead for real-time networks (mainly in embedded control applications)
- Real-time properties must be enforced in all layers
- Real-time networks frequently use a collapsed 3 layers structure:
 - physical, data link and application layers

Issues related with the physical layer:

- Interconnection topology
- Physical medium
- Coding of digital information
- Transmission rate
- Maximum interconnection length
- Max number of nodes
- Feeding power through the network
- Immunity to EMI
- Intrinsic safety

Interconnection topology

Topology	In favor	Against
Mesh	Point-to-point connections (wired, only). Several alternative paths.	Requires routing. Complex cabling (wired), difficult to maintain. Difficult to enforce total order
Tree (star)	Point-to-point connections. Simultaneous communication in parallel branches.	Requires routing. Potential long paths for deep nodes in different branches. Upper branches are bottlenecks.
Ring	Point-to-point connections. Simplified cabling.	Long path for back-to-back nodes. Depending on protocol, the whole ring is used as shared medium (more complex access control)
Bus	Simplified cabling. Direct communication (no routing)	Shared communication medium (more complex access control)

Physical medium

Copper wiring

Cheaper cables and interfaces (+), suffers EMI (-)

Optical fibers

 Immune to EMI, favors safety, wide bandwidth, low attenuation (+), expensive cables and interfaces (-)

Wireless – Radio frequency

 Mobility, flexibility (+), very susceptible to EMI (-), multi-path fading (-), attenuation (-), open medium (+/-)

Wireless – Infra-red light

Mobility, flexibility (+), line-of-sight (-), open medium(+/-)

Propagation delay in a bus

✓ Time for a bit to traverse the full length of the bus (δ)

- Bit length in a bus
 - ✓ Number of bits in transit in the bus (b), given δ and Tx_rate

Limit to protocol efficiency in a bus

Any message must be flushed from the bus before the next can be transmitted

Physical layerSpecial cases

□ Some protocols require spatial coherence at the bit level (b=1 => $Tx_rate < 1/2\delta$) (case of CAN)

Special cases - wireless

 In wireless networks the attenuation is strong (even worse with obstacles) and transmissions from one node may not reach all nodes in the network.

Special cases - wireless

 Attenuation is also responsible for a phenomenon called the hidden node terminal that jeopardizes transmission control based on carrier sensing

Special cases - wireless

 ✓ Transmission power, antenna efficiency and local noise deeply influences the communication range → Differences cause unidirectional communication links

Detection of collisions

- In shared broadcast buses
 - ✓ If bit length b=1, send 1 bit and listen
 - If bit length b>1, it is not possible to relate the bit being transmitted with what is sensed on the bus. In this case a jamming signal is used
- In wireless transmission it is not common to transmit and receive at the same time (expensive, requires multiple transceivers). Collisions can be sensed indirectly by means of acknowledging.

Summary:

Network topologies comparison:

 Mesh, Tree, Ring and Bus

Physical medium

 Copper, optical and wireless (IR & RF)

Effects of the propagation delay in a bus
Protocol efficiency in a bus
Collision detection