

Redes de Comunicação em Ambientes Industriais Aula 9

Luís Almeida Paulo Pedreiras

lda@det.ua.pt pedreiras@det.ua.pt

Electronic Systems Lab-IEETA / DET Universidade de Aveiro Aveiro, Portugal

RCAI 2005/2006

In the previous episode ...

Traffic scheduling

- Establishes the relative order of the message transmissions
- Constraints by the MAC
 - Minimum tx period (e.g. TDMA), jitter (e.g. Token), dead interval (pooled systems)
- On-line/off-line (table based), static/dynamic
- Resemblances with task scheduling (in CPUs)
 - CPU / Bus, Tx time / Execution time, ...
 - ✓ Preemption allowed only with multi-packet messages
- Similarities with server scheduling
 - Fraction of the bandwidth allocated to each node

In the previous episode ...

- Scheduling criteria:
 - Fixed priorities (RM, DM, importance/value)
 - Jynamic priorities (EDF, LLF, FCFS)
- Schedulability analysis:
 - Utilization
 - Response time
 - Timeline
 - Branch and bound (for static table/based)

WorldFIP Factory Instrumentation Protocol

- Created, in the 80s, in France for use in process control and factory automation.
- AFNOR standard C46601..7 (89-92)
- CENELEC standard EN50170,vol.3 (96)
- IEC standard 61158, type 7 (2000)
- Typical in train control systems

- Broadcast serial bus
- Synchronous transmission
- Manchester encoding

- Transmission rates 32 Kbit/s, 1 Mbit/s and 2.5 Mbit/s on copper or 5 Mbit/s on optical fiber
- Maximum Length 2000m @ 1Mbit/s
- Max. number of nodes 256

2 messaging systems:

- MPS real-time services, periodic, aperiodic;
 MMS subset non-real-time messaging
- Data payload between 0 and 128 bytes (256 for non realtime messages)
- Source-addressing (message identifiers with 16 bits)
- Master-Slave bus access control
 - BA Bus Arbitrator / Distributor

- MPS Messagerie Periodique e Sporadique
- Producer-Distributor-Consumer model
- Concept of Network Variable
 - Entity that is distributed (several local copies coexist in different nodes)
 - Can be periodic or aperiodic
 - Local copies of periodic variables are automatically refreshed by the network
 - Local copies of aperiodic variables are refreshed by the network upon explicit request

Elementary cycles organized in phases:

- Periodic (P1)
- Aperiodic (P3)
- MMS messages (P2)
- ✓ Sync padding (P4)

Buffer transfer (elementary transaction)

- Local read and write are carried out in local buffers and are independent of the bus activity
- Consumer(s) local buffers are automatically updated by the network

Buffer transfer (elementary transaction)

(figure by Tovar)

$$C = \frac{len(\text{ID}_\text{DAT}) + len(\text{RP}_\text{DAT})}{tx_rate} + 2 \times t_r$$

Data efficiency (periodic transfers)

 $t_r = turn around time, 10-70 tmacs (bit times)$ len(ID_DAT) = 64 bits len(RP_DAT) = 48 + data bits

Data_eff = $\frac{\text{data bits}}{\text{data bits} + 64 + 48 + 2*t_r}$

Must give time for the slowest node to decode the master messages and answer when addressed

E.g.

Tr (tmacs)	Data bits	Data eff. (%)		
20	16	9.5% 30%		
20	64			
20	1024	87%		

RCAI 2005/2006

Schedulability analysis

Just build the table (BAT) !

- Typically using branch and bound techniques to optimize the schedule (e.g. wrt to jitter of periodic buffer transfers, precedence and window constraints)
- The BAT can also be built using common criteria such as fixed priorities, or EDF

WorldFIP

Building the BAT with common criteria EC by EC, using fixed priorities

	1 {ba	$T_{m,n}=0$ for all m and n} \leftarrow	Clear the initial PAT
	2. for	$(k=1; k \le N_p; k++) \{\delta_{k+1}=0; \}$	Clear the linuar DAT
For each EC scan	3. for	$(n=0; (n \leq LCM(T)); n++) \{$	——— Go through all ECs
variables	4.	Load _n =0;	up to end of table
	5.	m=0;	
	б.	for $(k=1; k \le N_{r}; k++)$	—— Search variables in
	7.	$\delta_{k} = \delta_{k} = \delta_{k}$	fixed priority order
	8.	\mathbf{if} (Load _n + $\delta_{k,n}$ *C _k	<= E) {
	9.	$Load_n = Load_n + \delta$	*C, ;
	10.	m++;	
	11.	$BAT_{m,n} = k;$	— Place variable in the table
	12.	$\delta_{k,n+1} = 0;$	
	13.	}	
	14.	if $(n \mod T_k/E=O_k)$	$\delta_{k,n+1} = 1;$
	15.	}	Periodic activations
	16.	} RCAI 2005/2006	with offsets 15

Building the BAT with common criteria

EC by EC, using earliest deadline

	1 {BA	$T_{m,n} = 0$ for all m and n} \leftarrow Clear the initial R	۸т
	2. for	$(k=1; k \le N_p; k++) \{\delta_{k+1}=0; \}$	AI
Same algorithm	3. for	$(n=0; (n \leq LCM(T)); n++) \{$	
can still be used	4.	$Load_n = 0; m = 0;$ Go through all E	SCS
with EDF	5.	{sort vars by increasing up to end of tabl	e
		distance to deadline}	
Only difference is	6.	for $(k=1; k \le N_p; k++) \{$ - Scan all variable	es
the ovtro corting	7.	$\delta_{k,n+1} = \delta_{k,n}$; in EDF order	
ine extra sorting	8.	if (Load _n + $\delta_{k,n}^*C_k$ <= E) {	
in line 5	9.	$Load_n = Load_n + \delta_{k,n} * C_k;$	
	10.	m++;	
Sort only when	11.	$BAT_{m,n} = k;$	
new vars become	12.	$\delta_{k,n+1} = 0;$	
ready	13.	}	
·	14.	if (n mod $T_k/E=O_k$) $\delta_{k,n+1}=1$;	
	15.	} RCAL 2005/2006	16
	16.	}	10

Building the BAT with common criteria For fixed priorities it's more efficient var by var

	1.	$\{BAT_{m,n}=0$	for all m	and n} 🛶		Clear the initial BAT
For each Var	2.	$\{\text{Load}_n=0\}$	and m _n =0 fc	or all n}		and related vectors
place it in all due	3. 1	for (k=1;}	$\leq N_{p}; k++) $	•		— Go through all vars
ECs in the table	4.	for	: (́n=0 _k ;(n≤	<pre>LCM(T));n</pre>	=n+T _k)	{ in priority order
	5.		j=n mod 1	LCM(T);	· · ·	
More efficient	б.		while (Lo	ad _i +C _k > E) {	\frown For each var go
when the table is	7.		j= ++;	j mod LCM(т);	through all instances
when the table is	8.		{cheo	ck if dead	line	missed}
lightly to	9.		}			
moderately loaded	10.		Load;=Loa	d _i +C _k ;		
	11.		m _i ++;			
	12.		BAT _m =	k;	- Place	variable in the table
	13.		}			
	14.	}	-			
		-				. –

RCAI 2005/2006

Schedulability analysis

- But on-line scheduling is also possible
- Common analysis can be useful
 - Need to account for **blocking** due to non-preemption

 $B_i = \max_{l=j..N} (C_l)$ j is first var that can cause blocking

$$\checkmark \text{ RM:} \qquad \sum_{1}^{N} \frac{C_{i}}{T_{i}} + \max_{1..N} \left(\frac{B_{i}}{T_{i}} \right) < N(2^{1/N} - 1)$$

$$\checkmark \text{ EDF:} \qquad \sum_{1}^{N} \frac{C_{i}}{T_{i}} + \max_{1..N} \left(\frac{B_{i}}{T_{i}} \right) < 1 \quad \text{(as in SRP, Stack Resource Protocol)}$$

Schedulability analysis

Or you can get rid of the blocking using inserted idle-time

 In this case, you can use any analysis for preemptive scheduling with

Schedulability analysis

- Or you can build the initial part of the table after the critical instant (timeline analysis)
- For fixed priorities, first occurrence after critical instant is the one with longest delay wrt periodic release
- ✓ Consider the following set of 9 variables with periods given by T₁=1, T_{2..5}=2, T_{6..9} >3

Schedulability analysis

Algorithm for the timeline analysis Rwc – Worst-case response time for each variable Builds the table, EC by EC until all variables are scheduled once

Same as for	1. fo: 2.fo:	r (k r (n	=1;k≤N ₁ =1;(n :	$\sum_{p} \mathbf{i} \mathbf{k} + \mathbf{i} \mathbf{k} \leq \left[\mathbf{D}_{Np} / \mathbf{E} \right]$	wc _k =0; and H	δ _{k,1} =1;] Rwc _{Np} =0);	n++) { 	Cycle up to	e to scan EC by EC placing last variable
the RAT	3. Lo	ad _n =	:0;						
uie da i	4.	foi	: (k=1;	$k \leq N_{n}; k++$	-){	•	C	ycle to ch	loose next variable
EC by EC	5.		$\delta_{k,n+1} = \delta_{k,n+1}$	$\delta_{k,n}$;	-				
	6.	if	(Load	+δ, *C	l, <=]	E) {		- Place va	riable in the
	7.		Load _n	= $Load_n$	+ $\delta_{k,n}$	_, (_*C _k ;		EC if sp	ace
	8.		$\delta_{k,n+1} =$	0;	,				Calculate Rwc
	9.		if (R	$wc_k = 0$) R	wc _k =(n	1-1)*E+Lo	bad _n ;		- Calculate Kwe
	11.		}						II not done yet
	10.		if (n	mod T_k/E	Ξ=0)δ	_{k.n+1} =1;			
	11.		}					Account	for new instances
	12.	}						of higher	priority variables
	13.}	-		RCA	AI 2005/20	06			21

Schedulability analysis

 You can also constrain the periodic traffic to a smaller periodic window

Using the inserted idle-time approach
 X'_{max} = E - (S-X_{max})

RCAI 2005/2006

Constraining the size of the schedule table Size given by LCM(T_i)... can be very large! Make all periods harmonic i=1..N, T_i=A^{ki}* T, k_i integer or null, A and T constants Bound table length and rebuild it on-line (planning scheduler)

Delivers information on temporal accuracy (refreshness & promptness)

Aperiodic message transmission

Multiple phase cycle

Shared Dynamic Window

- Several nodes can transmit in that window
- The window width varies dynamically (uses the part of a cycle not used by periodic traffic)
- Nodes use the normal periodic transfers to signal the presence of aperiodic requests (using one control bit in the RP_DAT frame).

- The requests are stored in two FIFO queues with different priorities, urgent and normal
- Then the master directly polls the nodes that requested service, asking for the identification of the requested aperiodic transfers (list request – ID_RQ / RP_RQ)
- Finally, the master handles each requested aperiodic transfer as a regular buffer transfer (ID_DAT / RP_DAT)
- All these transfers are carried out within one or more consecutive aperiodic windows

Aperiodic requests handling

Sequence of network transfers from the same node to transmit aperiodic variables Y and W

RCAI 2005/2006

Response-time to an aperiodic tx request (R_a)

$\mathsf{R}_{\mathsf{a}} < \sigma_{\mathsf{naw}} + \mathsf{R}_{\mathsf{aw}}$

 σ_{naw} =longest consecutive period of time without access to the aperiodic window – dead interval

R_{aw}=response time from start of the window in which the request is first considered (possibly extending to following windows)

✓ Example:

Aperiodic window is the time left after the periodic traffic in each EC

$\mathsf{R}_{\mathsf{a}} < \sigma_{\mathsf{naw}} + \mathsf{len}(\mathsf{ABI})$

RCAI 2005/2006

Performance of the aperiodic system:

- If no minimum width is guaranteed, then this method behaves like a background server
- However, a minimum width can be set, which guarantees a minimum bandwidth to handle the aperiodic traffic.
- This is a mixed scheme that results in faster response time but at the price of lower efficiency due to the static bandwidth allocation

Summary:

- IEC standard 61158, type 7 (2000)
- Typical in train control systems
- Periodic and aperiodic traffic
- Producer/Distributer/Consumer cooperation model
- Periodic traffic: table based scheduling (BAT)
- Building the BAT:
 - any scheduling policy possible
 - BAT size may be a problem (LCM)

Summary:

On-line scheduling possible

- Admission control using adapted analysis (e.g. RM, EDF) or timeline analysis
- Data temporal validity (promptness and refreshness)
- Aperiodic requests handled in a shared dynamic window
 - Use the time left by periodic messages
 - Signalisation of aperiodic requests piggybacked in periodic messages
 - Pooled by the Distributor node
 - WCRT computation possible (dead interval + asynchronous busy window) RCAI 2005/2006