- |

T

Real-time Control Systems:
A Tutorial

Based on the bier

Diego Me

.

/V

Index

Real-Time Systems
Real-Time Operating Systems
e RTOS and non-RTOS
e Scheduling
» Static Priorities
« Dynamic Priorities
e What not to do
Digital Control Systems
e Design considerations
e Misconceptions about real-time
e Implementation
e What not to do
Real-Time Platform
e Choosing a Real-Time Platform

Questions...

Real-Time Systems

“A real-time systems is one in which the correctness of
a result not only depends on the logical correctness of
the calculation but also upon the time at which the
result is made available.”

/ :

—

Real-Time Operating Systems

When looking at a RTOS, one should start by
analyzing such features as:

e It's parallelism support (multi-tasking and multi-
threading)

e It’s predictability.
e And it’s responsiveness to an external event.

e Predictability and responsiveness make up for another
feature named system latency.

/ "

,w»'/

Real-Time Operating Systems

From a more technical perspective, one should look
for:

e Fast context switching.
e Small sized OS.
e Support for preemptive Scheduling based on priorities.

e Inter-task communication and synchronization
mechanisms.

¢ Real-Time timers.

/ P e

RTOS and non-RTOS

The main difference between them is the task manager,
which is composed by the Dispatcher and the Scheduler.

Like a non-RTOS, a RTOS provides support for multi-
tasking with multiple threads and inter-task
communication and synchronization mechanisms such as
semaphores, shared memory, pipes, mail boxes, etc...

In RTOS synchronization is of an even greater importance
in order to avoid blocking of shared resources and to
guarantee that the tasks are preformed in the correct order
when necessary.

“Real-Time Operating Systems:/

Scheduling

In 1973, Liu and Layland showed that the total
processor utilization U is given by
1 C.
v= E min(D;,T;)

Today this equation is used as schedulability test
where:

e n — number of tasks

e C - task execution time

e D - task deadline

e T - task period

_ Real-Time Operating Systems:

Scheduling

Scheduling Policies

v

O

qqqqqqqqqq

Static Scheduling

Vv

Dvnamic Scheduling

A
With Priorities

> v

Static Priorities

AF

Without Priorties

Dvnamic Priortes

{

Nnn—u J\"L 'U' {*!' Mon-
preemptive Preemptive Preemptive |[MNon-preemptivel | Preemptive| |preempiive
T ——F *\5'_‘ bl o U <
SJF LH’H mit Deadline|[mit Deadline]| | SRT HRRN| [RR FCFS

e {} Rl Time Schedling
' = Al | FPS: Fixed-Priority
llmih Ll tﬂ LLF JMUF FOCFS: Firs Come Firstserved — BEMS :"!mi':wwi'
T .) LM reraliore Ml Sefartadimgr
EE: NowmdNobin
B ‘ EDF: Exrdiest Deadine
EIH&'{.’F-?F:H&' Scheduling F-EDE SIF: Shortest Job Firs LIE: ::-:;_J.-;_m.d J-TT-.-.:
5RT: Shored Kemerimirg Tove

MUF: Maxmmen Ligency

HEERM: Highess Seyprorre rgo Nedf FC-EDF: Feedbark EDF

/ »
e Sl

“Real-Time Operating Systems:
Scheduling (Static Priorities)

FPS (Fixed Priority Scheduling) - The order the tasks are
executed is defined by their priority.

RMS (Rate Monotonic Scheduling) - “The shorter the period, the
higher the priority.” .

e The utilization upper bound is given by U<n2"" -1

e Optimal algorithm among fixed priority policies.

e It's possible to know which deadline will be missed.

e Low utilization(<70%) .

 Fixed priorities lead to starvation and deadlocks.

e Deadlines should be equal to periods.
DMS (Deadline Monotonic Scheduling) - Modified RMS
allowing tasks to have deadlines different from their periods.

e Priority is inversely proportional to its deadline.

/ :
e Sl

—Real-Time Operating Systems:/
Scheduling (Dynamic Priorities)

EDF (Earliest Deadline First) — The closer a deadline is the greater a task
priority becomes.

e Ifall tasks are periodic and preemptive, this algorithm is optimal and has a
utilization U< 1

o The execution time of the task is not taken into account.

LLF (Least Laxity First) — “The smaller the laxity, the higher the priority.”
e Laxity = deadline - remaining execution time
o It takes into consideration the execution time.

e But it uses an estimation as the execution time might not be know a priori, so
the scheduling might be incorrect.

e There’s also no way of knowing which task will fail in case of overload.

MUF (Maximum Urgency First) — Priority is granted according to a task
urgency, not allowing for more important tasks to fail their deadlines in
because of less important tasks.

e Urgency is defined by a combination of two fixed priorities and a dynamic one.
e The dynamic priority is inversely proportional to the task laxity.

» The fixed priorities are called task criticality and user priority.

o Task criticality > dynamic priority > user priority

10

\\

“Real-Time Operating Systems:
What not to do

Don’t use large or many conditional statements.

Don’t use empty/dummy loops as delays.

Don’t use interrupts indiscriminately.

Don't use fixed configuration information(e.g. #define).
Don’t use big single loop for implementation.

Don’t use message passing as primary communication
method.

Carefully debug the code.
Analyze memory usage during the design.

Don’t design without execution-time measurement.

11

/\/

Digital Controlled Systems

* Today most of the Jﬂeﬁ. _Y,)
Hold Actuator] Process
| ?\‘n("%
Sensor

implemented control
systems are based on digital

>>>>>

hardware.

12

“Digital Control Systems:
Desigh considerations

Errors due to A/D and D/A conversions and limited
length words calculations.

Errors in the software development are common.

Sampling is not uniform, periodic or synchronous(“no
zero-time-execution”).

There may be variations in the control algorithm
execution time(control jitter).

13

/

“Digital Control Systems:

Misconceptions about real-time

“Having D/A and A/D to interface between the
controller and the real world is enough to obtain a
real-time system.”

“If the physical process is slow there’s no need for real-
time.”

“Guarantying real-time performance is meaningless or
that even though it wasn't taken into account, the
control systems works.”

“Real-time programming is exclusively assembly
coding, priority interrupt programming and device
driver writing.”

14

“Digital Control Systems:
Implementation(1)

A controller can be represented by the general polynomial
equation.

R(@™)-uk)=T(a ™) -r(k)-s(@™)-y(k)

The controller algorithm is executed once in every
sampling period h.

The sampling period is a compromise between Nyquist-
Shannon Law (fs>2B), the computation time delay r with
it’s possible jitter and the limits of the hardware.

When in a system we have o<r<h we're facing a delay, as
forwhen r=h we have a loss.

5

—Digital Control Systems:
Implementation(2)
A simple real-time implementation
is conceivable with a single periodic . |
Set Event Variable() }zScheduler
ta81<. (wait function)
. . l’

The monolithic approach tends to (Cethighestprioity, A
y=read ;

lead to a larger feedback-delay. ys = signal_conditioning_scaling(y):
r=signal generator(Parameters);

In order to diminish this delay a | o2ty senstn

predictive controller ~may be |\uricDacchi) /

implemented. A linear predictor is
given by the following:

y(k+)—-y(k) _y(k)-y(k-1)
(k +1)—k k—(k-1)

= y(k+1) =2y(k) - y(k -1)

16

~Digital Control Systems:

Implementation(3)

Another approach is possible by dividing the process
in more than one real-time task.

Such an approach can be defined by the following

. _ . . T Deadline
equatIOIlSI Task 1 (with maximum priority) Task 2
Seheduler .lur Sampling time T Fl
>
- - Set_Event_Vanable(1) :Tusk | Deadline Task 1
u(k) =[Cf. | —CJ x,(k)| [d. 1 0 | nk) (wait function) : - L,
e Bttt B Bt bl | et [— vy
x,(k) || 0 1=d, || y(k) ! -
-~ | /5 =read ADC(Ch#x); \/—\T -
_ _ ys = signal conditioning scaling(y): Shared Memuiry \as
Ir(k+1) Al 0 I},(k) B, l 0 || k) r = signal _generator(Parameters); Set Event Vanable(2)
______ s = ——r— e & ol B e | Bk Iy =I|‘; }lg'l; A P
I_h(k+ 1) 0 : A I_].J(k) 0 i B_p }"(k)_. u=[Cr C}']* xu + [dr 0:0 d}"] # (wait funlenT/
write DAC(Ch#x, u); /]
\Resel_Ev ent_Varnable(2); Yy [xu= Au * xu + Bu * W;]
\H\""‘-—,_‘_‘_‘__.___._,_,. I

17

~Digital Control Systems:
Implementation(4)

Such a structure is ideal for a state-space controller.
, u(k) =K, r(k)-K, x(k)
The main task

calculates the new T o
Task 1 (with maximum priority) i

Control Signal. 1 ySChEdulEl‘ 'y ﬁ Sampling time T Tas Fl_-}
Set Event Vanable(1) m Deadline Task | I

FO]IOWQd by Ta_Sl(2 (wait function)

) p— s v [

%(k+1)=[A-K_C]x(k)+[B—K_ D] u(k)+ K, y(k)

eset_Event Vanable(2); (wait function)

where the new state |(r- szl senentorPurameters; Task 2
u=Kr*r-Kx*x;
L] . ’ l'
variable are calculated ||t Pac(Chi Sel_Event_Variable(2)
- | }
/ Shared Memory [y=read ADC(Chx);
| ,I, X, ¥, Ab, Bb, Kr, Kx | ys =signal conditioning_ scaling(y);

u
\ ete. x=Ab*x+Bb*[u'y']’;

— -

18

_ Digital Control Systems:
Implementation(5)

* As an extra is also possible to add a system supervisor

as a new task.

Task 1 (with maximum Priority)
Scheduler

¥
Set Event Variable(1) o Sampiing Time {control)
{(wait function) fe— >
T —J Deadhine | Deadline
/;—read ADC({Ch#x); \\ N —— Tmf]_ sk,
I Task 2

vs = signal conditioning scaling(v);
h plingr Time (supervision)
: [le_Sampling Time {super N
r =signal _generator(Parameters); — 2
Task 3

ry =[r; ys]; 2
Blocked by Task 1 Deadline
Task 3

u = [Cr —Cy]* xu + [dr 0;0 dy] * ry;

write DAC(Ch#x, u);
Shared Memory Task 2

\Reset_Event "v“miiublel’ﬁ}; ~ /)
“Set Event Variable(2)
L (wait function)

Scheduler Task3 /

X Set Event Variable(2)
(wait function)
[xu=A *xu+Br*ry;

| BN
[Supervision();] 4. — 1
19

Digital Control Systems: What not to do

Don'’t overlook the anti-aliasing filter.
Don’t implement the anti-aliasing filter in software.
Don't overlook the signal scaling.

Don't implement continuous-time controllers, when
not necessary.

20

Real-Time Platform

[t’s very common to find a real-time platform

composed by two computers, a host and a target.

Target
Real-Time

@%@) | %m@

Host

21

Choosing a Real-Time Platform

Preemptive Multitasking for hard real-time
requirements.

POSIX compliant.

Support for real-time scheduling.
Small latency.

Integration with Labview.

Existence of a development environment.

22

”

Questions...

23

