
Based on the paper of the same name by A. Gambier

Diego Mendes, nº42875

Index
 Real-Time Systems
 Real-Time Operating Systems

 RTOS and non-RTOS
 Scheduling

 Static Priorities
 Dynamic Priorities

 What not to do

 Digital Control Systems
 Design considerations
 Misconceptions about real-time
 Implementation
 What not to do

 Real-Time Platform
 Choosing a Real-Time Platform

 Questions…

2

Real-Time Systems

 “A real-time systems is one in which the correctness of
a result not only depends on the logical correctness of
the calculation but also upon the time at which the
result is made available.”

3

Real-Time Operating Systems
 When looking at a RTOS, one should start by

analyzing such features as:

 It’s parallelism support (multi-tasking and multi-
threading)

 It’s predictability.

 And it’s responsiveness to an external event.

 Predictability and responsiveness make up for another
feature named system latency.

4

Real-Time Operating Systems
 From a more technical perspective, one should look

for:

 Fast context switching.

 Small sized OS.

 Support for preemptive Scheduling based on priorities.

 Inter-task communication and synchronization
mechanisms.

 Real-Time timers.

5

RTOS and non-RTOS
 The main difference between them is the task manager,

which is composed by the Dispatcher and the Scheduler.

 Like a non-RTOS, a RTOS provides support for multi-
tasking with multiple threads and inter-task
communication and synchronization mechanisms such as
semaphores, shared memory, pipes, mail boxes, etc…

 In RTOS synchronization is of an even greater importance
in order to avoid blocking of shared resources and to
guarantee that the tasks are preformed in the correct order
when necessary.

6

Real-Time Operating Systems:
Scheduling
 In 1973, Liu and Layland showed that the total

processor utilization U is given by

 Today this equation is used as schedulability test
where:
 n – number of tasks

 C – task execution time

 D – task deadline

 T – task period

7

Real-Time Operating Systems:
Scheduling

8

Real-Time Operating Systems:
Scheduling (Static Priorities)
 FPS (Fixed Priority Scheduling) – The order the tasks are

executed is defined by their priority.

 RMS (Rate Monotonic Scheduling) – “The shorter the period, the
higher the priority.”
 The utilization upper bound is given by

 Optimal algorithm among fixed priority policies.

 It’s possible to know which deadline will be missed.

 Low utilization(<70%) .

 Fixed priorities lead to starvation and deadlocks.

 Deadlines should be equal to periods.

 DMS (Deadline Monotonic Scheduling) – Modified RMS
allowing tasks to have deadlines different from their periods.
 Priority is inversely proportional to its deadline.

9

Real-Time Operating Systems:
Scheduling (Dynamic Priorities)
 EDF (Earliest Deadline First) – The closer a deadline is the greater a task

priority becomes.
 If all tasks are periodic and preemptive, this algorithm is optimal and has a

utilization U≤ 1
 The execution time of the task is not taken into account.

 LLF (Least Laxity First) – “The smaller the laxity, the higher the priority.”
 Laxity = deadline - remaining execution time
 It takes into consideration the execution time.
 But it uses an estimation as the execution time might not be know a priori, so

the scheduling might be incorrect.
 There’s also no way of knowing which task will fail in case of overload.

 MUF (Maximum Urgency First) – Priority is granted according to a task
urgency, not allowing for more important tasks to fail their deadlines in
because of less important tasks.
 Urgency is defined by a combination of two fixed priorities and a dynamic one.
 The dynamic priority is inversely proportional to the task laxity.
 The fixed priorities are called task criticality and user priority.
 Task criticality > dynamic priority > user priority

10

Real-Time Operating Systems:
What not to do
 Don’t use large or many conditional statements.

 Don’t use empty/dummy loops as delays.

 Don’t use interrupts indiscriminately.

 Don’t use fixed configuration information(e.g. #define).

 Don’t use big single loop for implementation.

 Don’t use message passing as primary communication
method.

 Carefully debug the code.

 Analyze memory usage during the design.

 Don’t design without execution-time measurement.

11

Digital Controlled Systems
 Today most of the

implemented control
systems are based on digital
hardware.

12

Digital Control Systems:
Design considerations
 Errors due to A/D and D/A conversions and limited

length words calculations.

 Errors in the software development are common.

 Sampling is not uniform, periodic or synchronous(“no
zero-time-execution”).

 There may be variations in the control algorithm
execution time(control jitter).

13

Digital Control Systems:
Misconceptions about real-time
 “Having D/A and A/D to interface between the

controller and the real world is enough to obtain a
real-time system.”

 “If the physical process is slow there’s no need for real-
time.”

 “Guarantying real-time performance is meaningless or
that even though it wasn’t taken into account, the
control systems works.”

 “Real-time programming is exclusively assembly
coding, priority interrupt programming and device
driver writing.”

14

Digital Control Systems:
Implementation(1)
 A controller can be represented by the general polynomial

equation.

 The controller algorithm is executed once in every
sampling period h.

 The sampling period is a compromise between Nyquist-
Shannon Law (fs>2B), the computation time delay τ with
it’s possible jitter and the limits of the hardware.

 When in a system we have 0<τ<h we’re facing a delay, as
for when τ≥h we have a loss.

)()()()()()(111 kyqSkrqTkuqR  

15

Digital Control Systems:
Implementation(2)
 A simple real-time implementation

is conceivable with a single periodic
task.

 The monolithic approach tends to
lead to a larger feedback-delay.

 In order to diminish this delay a
predictive controller may be
implemented. A linear predictor is
given by the following:

)1()(2)1(
)1(

)1()(

)1(

)()1(










kykyky

kk

kyky

kk

kyky 


16

Digital Control Systems:
Implementation(3)
 Another approach is possible by dividing the process

in more than one real-time task.

 Such an approach can be defined by the following
equations:

17

Digital Control Systems:
Implementation(4)
 Such a structure is ideal for a state-space controller.

 The main task
calculates the new
control signal.

 Followed by Task 2
where the new state
variable are calculated.

18

Digital Control Systems:
Implementation(5)
 As an extra is also possible to add a system supervisor

as a new task.

19

Digital Control Systems: What not to do
 Don’t overlook the anti-aliasing filter.

 Don’t implement the anti-aliasing filter in software.

 Don’t overlook the signal scaling.

 Don’t implement continuous-time controllers, when
not necessary.

20

Real-Time Platform
 It’s very common to find a real-time platform

composed by two computers, a host and a target.

21

Choosing a Real-Time Platform
 Preemptive Multitasking for hard real-time

requirements.

 POSIX compliant.

 Support for real-time scheduling.

 Small latency.

 Integration with Labview.

 Existence of a development environment.

22

Questions…

23

