
“A comparative study on Memory Allocators in

Multicore and Multithreaded Applications”
Taís B.Ferreira, Rivalino Matias, Autran Macedo, Lucio B. Araujo

Federal University of Uberlândia. Uberlândia – MG, Brazil

Presented by: Luís Miguel Tomé Nóbrega

Aveiro, 13/12/2011 1 Real-Time Systems, DETI-UA

Introduction

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 2

 Running computer programs involves a lot of procedures

including many memory allocations and deallocations;

 Memory management is essential for the performance of

programs;

 Even more important in Multicore and Multithreads

applications;

Introduction: Memory allocation

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 3

 There are two levels of memory allocation:

1. Kernel Level: memory management of OS sub-systems;

2. User Level: implemented by UMA (user-level memory

allocator) that is a library responsible to manage the heap

area;

 There is always a default UMA but it can be replaced by

another one in order to optimize certain system;

Introduction: choice of the allocator

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 4

 Based on experimental tests, often on synthetic

benchmarks that perform different and random memory

allocation operations;

 Problem: hardly generalized for real applications;

 Solution: this paper presents an alternative way to

perform the referred tests, using real applications to

perform them.

Allocators: basic operation

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 5

Fig.1:General structures of a UAM
 Data structure (fig.1) is similar to all allocators

nevertheless they differ in the way they manage

the heap, thus they way they deal with issues like

blowup, false sharing and memory contention.

Process calls malloc/new

1. Request of a heap area

2.Creation and initialization of
the heap header

3. If it is necessary more space,
another heap is request (1)

Allocators: Hoard (version 3.8)

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 6

 High performance in multithreaded programs running on

multicore processors;

 3 types of heaps:

1. Thread-cache (<256B);

2. Local heap;

3. Global heap;

 Minimize heap contention;

 Minimize blowup;

 Avoids false sharing;

Fig.2: Hoard structures

Allocators: Ptmalloc (version 2)

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 7

 Also developed for multiprocessors running multithreaded

programs;

 Multiple heap areas;

 Does not address false sharing neither blowup;

Fig.3: Ptmalloc structures

Allocators: Ptmalloc (version 3)

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 8

 Improvement over Ptmallocv2;

 Size of blocks is different;

 Large bins are kept in tree that implements binary search;

Allocators: TCMalloc

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 9

 Local heap per thread (from 8B to 32kB);

 Global heap shared by all threads (>32kB);

 Minimizes blowup;

 Minimizes contention;

 Does not address false sharing;

Fig.4: TCMalloc structures

Allocators: Jemalloc

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 10

 Similar to Hoard, differing in the number of heaps and

size of memory objects:

 Thread cache (<32 kB);

 Heaps:

 Small(between 2 and 4kB);

 large(between 4 and 4MB);

 huge(>4MB): one shared!!

 Addresses all the issues.

Local to threads and

4 per processor!

Allocators: TSLE (version 2.4.6)

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 11

 Focused on RT applications;

 Objective is to keep the memory allocation response

time constant;

 Unique heap shared by all threads;

 Does not address contention;

Fig.5 TSLF structures

Allocators: Miser

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 12

 Based on Hoard, assumes that the majority of memory

requests are up to 256 and try to meet that size fast;

 1 local heap per thread;

 Global heap;

 Avoid false sharing;

 Avoid blowup;

 Does not solve requests

for memory blocks larger

then 256B;
Fig.6 Miser structures

Experimental study

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 13

 Methodology:

1. Characterization of the memory usage in each application;

2. Linking applications to each allocator and analyze

performance in terms of response time, memory

consumption and memory fragmentation;

 Instrumentation

 3 Core Duo 2.4 GHz, 2 – gigabyte Ram

1. Running the middleware applications (3 applications);

2. Database;

3. Workload generator tools;

Result Analysis

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 14

 Request size distribution

Fig.7 Request size distribution

Result Analysis

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 15

 Middleware performance per allocator

Fig.8 Middleware performance per allocator

Result Analysis

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 16

 Memory consumption per allocator

Fig.9 Memory consumption per allocator

Result Analysis

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 17

 Fragmentation level per allocator

Fig.9 Fragmentation level per allocator

Conclusions

Aveiro, 13/12/2011 Real-Time Systems, DETI-UA 18

 TCMalloc presents the best results followed by

Ptmallocv3;

 Jemalloc and Hoard show very good performance in

terms of response time but high memory consumption

and fragmentation;

