
Lecture 3

Introduction to Real-Time kernels

Task States
Generic architecture of Real-Time kernels

Typical structures and functions of Real-Time kernels

Real-Time Systems

DETI - STR 14/15 2

Last lecture (2)

•Computational models (real-time model)

•Real-time tasks: periodic, sporadic and aperiodic

•Temporal constraints of types: deadline, window,
synchronization and distance

•Implementation of tasks using multitasking kernels

•Logic and temporal control

•Event-triggered and time-triggered tasks

DETI - STR 14/15 3

Task states

Task creation

Association between executable code (e.g. a “C” language function)
to a private variable space (private stack) and a management
structure - task control block (TCB)

Task execution

Concurrent execution of the task's code, using the respective private
variable space, under control of the kernel. The kernel is responsible
for activating each one of the task's jobs, when:

•A period has elapsed (periodic)

•An associated external event has occurred (sporadic)

time

J1
n J1

n+1 J1
n+2J2

k J2
k+1J3

i J3
i+1

DETI - STR 14/15 4

Task states

Execution of task instances (jobs)

After being activated, task's jobs wait in a queue (the ready queue)
for its time to execute (i.e., for the CPU)

The ready queue is sorted by a given criterion (scheduling
criterion). In real-time systems, most of the times this criterion is not
the arrival order!

J1
n

...
J2

k

Jobs
J3

i Execution
CPU

Preemption

Termination

DETI - STR 14/15 5

Task states

Task states

Task instances may be waiting for execution (ready) or executing.
After completion of each instance, the task stay in the idle state,
waiting for its next activation.

Thus, the basic set of dynamic states is: idle, ready and execution.

Ready

Termination
/Finish

Idle
Executing

Activation
Dispatch

Preemption

Creation

DETI - STR 14/15 6

Task states

Other states: blocked

Whenever an executing task tries to use a shared resource (e.g. a
memory buffer) that is already being used in exclusive mode, the
task cannot continue executing. In this case it is moved to the
blocked state. It remains in this state until the moment in which the
resource is released. When that happens the task goes to the
ready state.

Execução

Blocked

Resource released

Resource busy

Ready

Termination
/Finish

Idle
Executing

Activation
Dispatch

Preemption

Creation

DETI - STR 14/15 7

Task states

Self suspension (sleep)

In certain applications tasks need to suspend its execution for a
given amount of time (e.g. waiting a certain amount of time after
requesting an ADC conversion), before completing its execution. In
that case tasks move the suspended state.

Suspended

Self-suspension
Execução

Blocked

Resource released

Resource busy

Ready

Termination
/Finish

Idle
Executing

Activation
Dispatch

Preemption

Creation

Reactivation

DETI - STR 14/15 8

Internal Architecture of a Real-Time Kernel

Basic services
● Task management (create, delete, initial activation, state)
● Time management (activation, policing, measurement of time intervals)
● Task scheduling (decide what jobs to execute in every instant)
● Task dispatching (putting jobs in execution)
● Resource management (mutexes, semaphores, etc.)

τ1

System_calls

System hardware

τ2
τN

τ3

Time
manag.

timerDispatch

Scheduler

Task
manag.

Resource
manag.

Shared Res.

TCBs

DETI - STR 14/15 9

Management structures

TCB (task control block)

This is a fundamental structure of a kernel. It stores all the relevant
information about tasks, which is then used by the kernel to manage
their execution.

Common data (not exhaustive)
● Task identifier
● Pointer to the code to be executed
● Pointer to the private stack (for context saving, local variables, ...)
● Periodic activation attributes (task type (periodic/sporadic), period, initial

phase, etc)
● Criticality (hard, soft, non real-time)
● Other attributes (deadline, priority)
● Dynamic execution state and other variables for activation control, e.g.

SW timers, absolute deadline, ...

DETI - STR 14/15 10

Management structures

RTKPIC's TCB
typedef struct {

unsigned char id; /* task id - 0..14 */
void (*func_ptr)(void); /* task first instruction address */
unsigned char state; /* task state */
unsigned int period; /* task period in ticks */
unsigned int deadline; /* task deadline relative to activation */
unsigned long nx_activ; /* task next activation in absolute ticks */
unsigned long nx_deadline; /* task next deadline in absolute ticks */
unsigned char priority; /* task priority */

} TASK;

/* Number of tasks */
#define NTASKS 14 /* main + 13 user tasks */

/* Task Control Table */
TASK tcb[NTASKS]

DETI - STR 14/15 11

Management structures

TCB structure

TCBs are often defined in a static array, but are normally structured
as linked lists to facilitate operations and searches over the task set.

E.g., the ready queue (list of ready tasks sorted by a given criteria) is
maintained as a linked list. These linked lists may be implemented e.g.
through indexes. Multiple lists may (and usually do) coexist!

TCB 1

TCB 2

TCB 3

TCB N

...
TCB 4

Top of task
list

Only 3
TCBs are
used (1,2
and 4)

TCB 1

TCB 2

TCB 3

TCB N

...
TCB 4

Top of ready list

Only Tasks
2 and 4 are
readys

DETI - STR 14/15 12

Estruturas de gestão

Example: TCB structure of RTKPIC18
The RTKPIC18 was designed to handle applications with a small
number of tasks. For this reason no lists were implemented.
Consequently, whenever it is needed to do a search (e.g. to handle
periodic task activations), the whole TCB set must be checked.

 /* Tick handler code */
for (temporary_i = 1; temporary_i < n_task; temporary_i++)
{

temporary_task_i = tcb + temporary_i;
if (temporary_task_i->nx_activ == system_clock)
{ /* new activation */

if ((temporary_task_i->state == READY) || (temporary_task_i->state == RUN))
 deadline_miss |= (0x01 << temporary_i); /* deadline missing */

temporary_task_i->state = READY;
temporary_task_i->nx_activ += temporary_task_i->period;

 if ((preempt_sys == PREEMPT) || (run_task_id == 0))
Call_scheduler = 1; /* New task READY: Call scheduler */

 if (sch_alg == EDF)
Call_EDF = 1; /* Call EDF priority set */

}

Serach all
the TCB
array

Check if
next
activation
is duer

Check for
deadline

misses

Change state
and call the
scheduler

DETI - STR 14/15 13

Management structures

Access to shared resources

Exclusive access shared resources (critical sections), have to be
managed in an appropriate way, to allow access by only one task in any
instant (as for the CPU). A simple way to do it is using atomic flags
(mutexes), monitors (non preemptive execution) or semaphores.

For the case of semaphores it is needed a structure (semaphore
control block – SCB) that holds its state as well as the list of tasks that
are waiting for access.

Counter (state)
Waiting tasks list

SCB

DETI - STR 14/15 14

Management functions

Time management

Time management is another critical activity on kernels. It is required to:

● Activate periodic tasks

● Check if temporal constraints are met (e.g. deadline violations)

● Measure time intervals (e.g. self-suspension)

It is based on a system timer. This timer can be configured in two
modes:

● Periodic tick: generates periodic interrupts (system ticks). The respective
ISR handles the time management. All temporal attributes (e.g. period,
deadline, waiting times) must be integer multiples of the clock tick.

● Single-shot/One-shot/tickless: the timer is configured for generating
interrupts only when there are periodic task activations or other similar
events (e.g. the termination of a task self-suspension interval).

DETI - STR 14/15 15

Management functions

Tick-based systems

The tick defines the system's temporal resolution.
Smaller ticks corresponds to better resolutions.
E.g. 10ms tick => task periods: T1=20ms, T2=1290ms, T3=25ms

The tick handler is code that is executed periodically. Thus it consumes
CPU time, representing overhead (Ctick/Ttick)
The bigger the tick, the lower the overhead!!

Compromise is needed: tick = GCD (Ti, i=1..N)

E.g. T1=20ms, T2=1290ms, T3=25ms => GCD(20,1290,25)=5ms
However it mus be assured that tick > min_tick, which is imposed by the CPU
processing capacity!

time
Ttick

Ctick

DETI - STR 14/15 16

Management functions

Measurement of time intervals

In tick-based systems, the kernel keeps a variable that counts the
number of ticks since the system boot.

• e.g. in the RTKPIC kernel “unsigned long system_clock”, accessed by the
macro get_sys_time()

• With tick=10ms, this variable wraps around after 1.6 years

Better precision is achieved if the timer is read directly. However,
bigger time ranges may imply using SW managed variables.

E.g. in Pentium CPUs, with a 1GHz clock, the TSC wraps around
after 486 years !!!

DETI - STR 14/15 17

Management functions

Scheduler

The scheduler selects which task to execute among the (eventually)
several ready tasks

In real-time systems must be based on a deterministic criteria, which
must allow computing an upper bound for the time that a given task may
have to wait on the ready queue.

J1
n

...
J2

k

Ready queue

J3
i

Queue Head

Scheduler Defines the
queue order

DETI - STR 14/15 18

Management functions

Dispatch

•Puts in execution the task selected by the scheduler

•For preemptive systems it may be needed to preempt (suspend the
execution) of a running task. In these cases the dispatch mechanism
must also manipulate the stack.

Task 1
executing

Task 1 Stack

Task 2
starts

executing

Task 2 Stack

Dispatch
function

(...)
tcb1.SP=SP
SP=tcb2.SP

rti

Dynamic
variables

CPU
registers

Tick interrupt

Tick
handler CPU

registers

SP(1)

SP(2)

DETI - STR 14/15 19

RTKPIC – Real-Time Kernel for PIC18

main()
{
 create_system(...);
 /* For each task */
 create_task (...);

 config_system();
 release_system();
 while(1)
 {
 /* background */
 }
}

task_n()
{

 task_init();

 while(1) {
 /* Task code */

.....
 }

}

Based on a older RTOS for X86 developed at the UA (ReTMiK)
• Tick based

• For PIC18FXXX

• Task code is cyclic

• Scheduler is part of the kernel

• Allows preemption control

• IPC via global variables

• Monolithic application
(kernel + application code in a
single executable file)

DETI - STR 14/15 20

SHaRK – Soft and Hard Real Time Kernel
http://shark.sssup.it/

• Research kernel, main objective is
flexibility in terms of scheduling and shared
resource management policies

• POSIX (partially compat.)

• For x86 (>= i386 with MMU)
architectures

• Cyclic task

• Several IPC methods

• Concept of Task Model
(HRT, SRT, NRT, per, aper)
and Scheduling Module

• Policing, admission control

• Monolithic application

τ0

Dados globais

hardware

τN...

Kernel
genérico

livrariasEDF

OSLib

RM

TBS

DS

PCP

PIP

SRP

void * TaskBody (void *arg){
/* Init code */
while (cond) {
 /* Task code */
 (...)
 task_endcycle();}
/* terminates if “cond” */
return my_val;}

NRT

InitFile
(module declaration)

tarefa __init__
(initializations and call main())

int main (){
/* Other inits */
/* Define tasks */
 task_create ();
 task_activate ();
/* May terminate or wait to stop
the system */
while (keyb_getchar()!=ESC);
sys_end ();}

DETI - STR 14/15 21

Xenomai: Real-Time Framework for Linux
http://www.xenomai.org/

• Allow the use of Linux
for Real-Time applications

• Dynamically loadable modules

• Tasks may execute and kernel
or user space

• POSIX (partially compat.)

• Cyclic tasks

• Support to several IPC
mechanisms, both between
RT and NRT tasks
(pipe, queue, buffer, ...)

// A task
void task_a(void *cookie) {

/* Set task as periodic */
err=rt_task_set_periodic(NULL, TM_NOW, TASK_A_PERIOD_NS);
for(;;) { // Forever

err=rt_task_wait_period(&overruns);
// Task load

}
return;

}
// Main
int main(int argc, char *argv[]) {

.... // Init code
/* Create RT task */
err=rt_task_create(&task_a_desc, "Task a", TASK_STKSZ,

TASK_A_PRIO, TASK_MODE);
rt_task_start(&task_a_desc, &task_a, 0);
....
/* wait for termination signal */
wait_for_ctrl_c();
return 0;

}

DETI - STR 14/15 22

Summary of lecture 3

• The task states

– States and transition diagram

• The generic architecture of a RT kernel

• The basic components of a RT kernel, its structure and
functionalities

• Some examples: RTKPIC18, SHaRK and XENOMAI

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

