
DETI * STR 2014/2015 1

Lecture 6

Dynamic Priority Scheduling

Online scheduling with dynamic priorities:
Earliest Deadline First scheduling– CPU utilization bound

Optimality and comparison with RM:
Schedulability level, number of preemptions, jitter and response time

Other dynamic priority criteria
Least Slack First, First Come First Served

Real-Time Systems

DETI * STR 2014/2015 2

Last lecture (5)

● On-line scheduling with fixed-priorities

● The Rate Monotonic scheduling policy – schedulabilty analysis
based on utilization

● The Deadline Monotonic and arbitrary deadlines scheduling
policies

● Response-time analysis

DETI * STR 2014/2015 3

On-line scheduling with dynamic priorities

J1
n

...
J2

k

Queue with ready tasks

J3
i

Ready
Queue
Head

Scheduler

Queue sorted by
instantaneous priorities
(dynamically re-sorted)

● Scheduling is based on dynamic criteria, i.e. one that is known only at
run-time

● The dynamic parameter used to sort the ready tasks can be
understood as a dynamic priority

● The ready queue is sorted according with decreasing priorities
whenever there is a priority change. Executes first the task that has the
greater instantaneous priority

Complexity O(n.log(n))

DETI * STR 2014/2015 4

On-line scheduling with dynamic priorities

Pros
● Scales well

– Changes made to the task set are immediately seen by the
scheduler

● Accommodates easily sporadic tasks

Cons
● Complex implementation

– Requires a kernel supporting dynamic priorities
● Higher overhead

– Re-sorting of ready queue; depends on the algorithm
● Imprevisibility on overloads

– It is not possible to know a priory which tasks will fail deadlines

DETI * STR 2014/2015 5

On-line scheduling with dynamic priorities

Priority allocation
● Inversely proportional to the time to the deadline

– EDF – Earliest Deadline First
● Optimal among all dynamic priority criteria

● Inversely proportional to the laxity or slack
– LSF (LST or LLF) – Least Slack First

● Optimal among all dynamic priority criteria
● Inversely proportional to the service waiting time

– FCFS –First Come First Served
● Not optimal with respect to meet deadlines;

extremely poor real-time performance
● etc.

DETI * STR 2014/2015 6

On-line scheduling with dynamic priorities

Schedulability tests
● Since the schedule is built online it is important to determine a priori if

a given task set meets or not its temporal requirements

● There are three types of schedulability tests:

– Based on the CPU utilization

– Based on the CPU load (processor demand)

– Based on the response time

DETI * STR 2014/2015 7

EDF Scheduling

EDF tests based on CPU utilization

(n independent tasks, with preemption)

● D=T

● Allows using 100% of CPU with timeliness guarantees

● D<T

● Pessimistic test

● D≤T

–

U (n)=∑
i=1

n C i

T i

≤1⇔Task set is schedulable

∑
i=1

n C i

Di

≤1⇒Task set is schedulable

∑
i=1

n C i

min(D i ,T i)
≤1⇒Task set is schedulable

DETI * STR 2014/2015 8

Synchronous release

τi Ti Ci

1 3 1

2 4 1

3 6 2.1

U = 1/3 + 1/4 + 2.1/6 = 0.93 > 0.78 ⇒ 1 activation per period NOT guaranteed.
τ3 fails a deadline!

Task set

t=0 t=2

τ3

τ2

τ1

t=6

RM Scheduling - example

Deadline miss

DETI * STR 2014/2015 9

Synchronous release (irrelevant in EDF if D=T)

τi Ti Ci

1 3 1

2 4 1

3 6 2.1

U = 1/3 + 1/4 + 2.1/6 = 0.93 ≤ 1 ⇔ 1 activation per period guaranteed

Task set

t=0 t=2

τ3

τ2

τ1

t=6

EDF Scheduling – same example

DETI * STR 2014/2015 10

Synchronous release (irrelevant in EDF if D=T)

τi Ti Ci

1 3 1

2 4 1

3 6 2.1

Task set

t=0 t=2

τ3

τ2

τ1

t=6

EDF Scheduling – same example

Note:
•No deadline misses
•Less preemptions
•Higher jitter on quicker tasks
•The worst-case response time does not coincide
 necessarily with the synchronous release

DETI * STR 2014/2015 11

Initial phase O3

τi Ti Ci Oi

1 3 1 0

2 4 1 0

3 6 2.1 2.5

Task set

t=0 t=2

τ3

τ2

τ1

t=6

RM vs EDF scheduling – initial phases

RM scheduling became feasible!

t=0 t=2

τ3

τ2

τ1

t=6

With EDF the initial phase is irrelevant (if D=T)

DETI * STR 2014/2015 12

U = 1/2 + 2/4 = 1

t=0 t=2

τ2

τ1

t=4

RM vs EDF scheduling – particular cases

t=0 t=2

τ2

τ1

t=4

RM

EDF

The actual resulting schedule depends on the criteria to break
ties. Independently of the criteria, deadlines are met.

DETI * STR 2014/2015 13

U = 1/2 + 2/5 = 0.9

RM vs EDF scheduling – particular cases

t=0 t=2

τ2

τ1

t=5

t=0 t=2

τ2

τ1

t=5

RM

EDF
C1 or C2 cannot increase,
otherwise deadlines will
be missed!

C1 or C2 may increase
without causing deadlines
misses, until U=1

t=0 t=2

τ2

τ1

t=5

C2 = 2.5 ⇒ U=1

DETI * STR 2014/2015 14

EDF Scheduling

Notion of fairness
● Be fair on the attribution of resources (e.g. CPU)

● EDF is intrinsically fairer than RM, in the sense that tasks see its
relative deadline increased as the absolute deadline approaches,
independently of its period or any other static parameter.

Consequences:

● Deadlines are easier to met

● As the deadlines approach preemptions are reduced

● The slack of tasks that are quick but have large deadlines can be used
by other task (higher jitter on tasks with shorter periods)

DETI * STR 2014/2015 15

CPU Load Analysis

● For D ≤ T, the bigger period during which the CPU is permanently used
(i.e. without interruption, idle time) corresponds to the scenario in which
all tasks are activated synchronously. This period is called
synchronous busy period and has duration L

● L can be computed by the following iterative method, which returns the
first instant since the synchronous activation in which the CPU
completes all the submitted jobs

L(0)=∑
i

Ci

L(m+ 1)=∑
i

(⌈
L(m)

T i

⌉∗Ci)

DETI * STR 2014/2015 16

CPU Load Analysis

h(t)≤t ,∀ t∈[0, L]⇒Task ser is schedulable (synchronous activations)

h(t)= ∑
i=1. . n

max (0,1+ ⌊
(t−Di)

T i

⌋)∗Ci

S=U iSi , Si={m∗T iDi :m=0,1 , ...}

Knowing L, we have to guarantee the load condition, i.e.

In which h(t) is the load function

The computation of h(t) for ∀t ∈[0,L) is unfeasible. However it is enough
computing the load condition for the instants in which the load function
varies, i.e.

Note: there are other, possibly shorter, values for L

L=
∑

i=1. . n

(T i−D i)∗U i

1−U
, if D i≤T i ,∀i

I. Ripoll, A. Crespo, and A.K. Mok. Improvement in Feasibility
Testing for Real-TimeTasks. Journal of Real-Time Systems, 11
(1):19-39, 1996.

DETI * STR 2014/2015 17

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

Load

t

h
(t

)

CPU Load Analysis

Illustration of h(t)
● Task with T=D=4; C=1

Floor function
http://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/Flo
or_function.svg/500px-Floor_function.svg.png

t t-D floor((t-D)/T) h(t)

0 -4 -1 0

1 -3 -1 0

2 -2 -1 0

3 -1 -1 0

4 0 0 1

5 1 0 1

6 2 0 1

DETI * STR 2014/2015 18

Task set

t=0 t=2

τ3

τ2

τ1

t=10

EDF Scheduling

τi Ci Di Ti

1 1 3 10

2 2 18 20

3 3 4 4

t=20

The CPU load analysis indicates that the task set is schedulable!

L=16

∑
i=1

n C i

min(D i ,T i)
=

1
3
+

2
18

+
3
4
=1.194>1⇒Schedulability not guaranteed

DETI * STR 2014/2015 19

Response-time analysis

● With EDF, the response time analysis is more complex than with fixed
priorities because we don't know a priori which instance suffers the
maximum interference

● However, it is possible computing the worst-case response time using
the notion of busy period relative to the deadline

● An upper bound to the response time can be easily obtained with the
following expression, valid id U ≤ 1

Note that thus upper bound is very pessimistic!

∀i , Rwci≤T i∗U

DETI * STR 2014/2015 20

LSF Scheduling

LSF vs EDF short comparison

● LS is optimal (as EDF)

● As slack ↓ ⇒ Priority ↑

● Priority of ready tasks increases as time goes by

● Priority of the task in the running state does not change

– On EDF the priorities of all tasks (ready and executing)
increase equally as time goes by

● Rescheduling on instants where there are activations or terminations

● Causes and higher number of preemptions than EDF (and thus higher
overhead)

● No significant advantages with respect to EDF!

DETI * STR 2014/2015 21

τi Ti Ci

1 3 1

2 4 1

3 6 2.1

Task set

t=0 t=2

τ3

τ2

τ1

t=6

LSF scheduling– same example

t=0 t=2

τ3

τ2

τ1

t=6

EDF

LSF

DETI * STR 2014/2015 22

FCFS Scheduling

A brief comparison between FCFS
and EDF/LLF

● Non optimal

– May lead to deadline misses even with
 very low CPU utilization rates

● “Job age” ↑ ⇒ Priority ↑

● Priority of the ready and running tasks increases as time goes by (an in
EDF)

● New jobs always get the lower priority

● There are no preeemptions (smaller overhead and facilitates the
implementation)

● Very poor temporal behavior!

DETI * STR 2014/2015 23

τi Ti Ci

1 3 1

2 4 1

3 6 2.1

Task set

t=0 t=2

τ3

τ2

τ1

t=6

FCFS – same example

t=0 t=2

τ3

τ2

τ1

t=6

EDF

FCFS

When the “age” is the
same the tie break criteria
is decisive!

DETI * STR 2014/2015 24

Summary of lecture 6

● On-line scheduling with dynamic priorities

● The EDF - Earliest Deadline First criteria: CPU utilization bound

● Optimality of EDF and comparison with RM:

– Schedulability level, number of preemptions, jitter and
response time

● Other dynamic priority criteria:

– LLF (LST) - Least Laxity (Slack) First

– FCFS - First Come First Served

	Aula 6 Escalonamento usando prioridades dinâmicas Escalonamento on-line com prioridades dinâmicas O critério Earliest Deadline First – limite de utilização de CPU Optimalidade e comparação com RM: nível de escalonabilidade, número de preempções, jitter de disparo e tempo de resposta Outros critérios de prioridades dinâmicas: Least Slack First, First Come First Served
	Aula anterior (5)
	Escalonamento on-line com prioridades dinâmicas
	Slide 4
	Slide 5
	Slide 6
	Escalonamento EDF
	Escalonamento RM – exemplo
	Escalonamento EDF – mesmo exemplo
	Slide 10
	Escalonamento RM vs EDF – fases iniciais
	Escalonamento RM vs EDF – casos particulares
	Slide 13
	Slide 14
	Análise da carga imposta ao CPU
	Slide 16
	Slide 17
	Slide 18
	Análise do tempo de resposta
	Escalonamento LSF
	Escalonamento LSF – mesmo exemplo
	Escalonamento FCFS
	Escalonamento FCFS – mesmo exemplo
	Resumo da Aula 6

