
DETI * STR 2014/2015 1

Lecture 7

Exclusive access to shared resources

Exclusive access to shared resources
Priority inversion as a consequence of blocking

 Basic techniques to enforce exclusive access to shared resources:
Priority Inheritance Protocol – PIP

Priority Ceiling Protocol – PCP
Stack Resource Protocol- SRP

Real-Time Systems

DETI * STR 2014/2015 2

Last lecture (6)

● On-line scheduling with dynamic priorities

● The EDF - Earliest Deadline First criteria: CPU utilization bound

● Optimality of EDF and comparison with RM:

– Schedulability level, number of preemptions, jitter and
response time

● Other dynamic priority criteria:

– LLF (LST) - Least Laxity (Slack) First

– FCFS - First Come First Served

DETI * STR 2014/2015 3

Shared resources with exclusive access

ready

termination

idle
running

activation
dispatch

preemption

creation

blocked

resource freed

resource busy

Tasks: the Blocked state

When a running task tries to access a shared resource (e.g. a buffer, a

communication port) that is already taken (i.e. in use) by another task, the

first one is blocked. When the resource becomes free, the blocked task

becomes again ready for execution. To handle this scenario the state

diagram is updated as follows:

DETI * STR 2014/2015 4

The priority inversion phenomenon

-
P

ri
or

it
y

+

τ3

Priority inversion (B1)

τ1

τ2

● On a real-time system with preemption and independent tasks, the
highest priority ready task is always the one in execution

● However, when tasks share resources with exclusive access, the case is
different. The highest priority task may be blocked by another (lower
priority) task, whenever this latter one owns a resource needed by the
first one. In such scenario it is said that the highest priority task is
blocked.

● When the blocking task (and eventually other tasks with intermediate
priority) execute, there is a priority inversion.

DETI * STR 2014/2015 5

The priority inversion phenomemon

● The priority inversion is an unavoidable phenomenon on the presence
of shared resources with exclusive access.

● However, in real-time systems, it is of utmost importance bound and
quantify its worst-case impact, to allow reasoning about the
schedulability of the task set.

● Therefore, the techniques used to guarantee the exclusive access to the
resources (synchronization primitives) must restrict the area of the
priority inversion and be analyzable, i.e., allow the quantification of the
maximum blocking time that each task may experience in any shared
resource.

DETI * STR 2014/2015 6

Techniques to allow exclusive access

Synchronization primitives
● Disable Interrupts

– disable / enable or cli / sti

● Inhibit the preemption

– no_preemp / preempt

● Use of locks or atomic flags (mutexes – though this term is also used to
designate semaphores – lock / unlock)

● Use of semaphores

– Counter + task list – P / V ou wait / signal

DETI * STR 2014/2015 7

Techniques to allow exclusive access

-
Pr

io
ri

ty
 +

Blocking by interrupt
inhibiting (B1)τ1

τ2

Interrupt inhibit
● All other system activities are blocked, not just other tasks, but also

interrupt service routines, including the system tick handler.

● This technique is very easy to implement but should only be used with
very short critical regions (e.g. access to a elementar variable)

● Each task can only be blocked once and for the maximum duration of
the critical region of lower priority tasks (or smaller relative deadline
for EDF), even if these don't use any shared resource!!

DETI * STR 2014/2015 8

Techniques to allow exclusive access

-
Pr

io
ri

ty
 +

Blocking by preemption
inhibiting (B1)τ1

τ2

Preemption inhibiting
● All other tasks are blocked. However, contrarily to disabling the

interrupts, in this case the interrupt service routines, including the
system tick, are not blocked!

● Very easy to implement but not efficient, as it causes unnecessary
blocking.

● Each task can only be blocked once and for the maximum duration of
the critical region of lower priority tasks (or smaller relative deadline
for EDF), even if these don't use any shared resource!!

DETI * STR 2014/2015 9

Techniques to allow exclusive access

Locks or semaphores
● These techniques only block tasks that actually use the

resources!
● Costly but more efficient implementation

● However, the blocking duration depends on the specific protocol used
to manage the semaphores

● These protocols must prevent:

– Indeterminate blocking

– Chain blocking

– Deadlocks

DETI * STR 2014/2015 10

• The blocking task (lower priority) temporarily inherits the priority of
the blocked task (the one with higher priority).

• Limits the blocking duration, preventing the execution of
intermediate priority tasks while the blocking tasks owns the critical
region. The priority of the blocking tasks returns to its nominal value
when it exist the critical region.

PIP – Priority Inheritance Protocol
-

Pr
io

ri
ty

 +

Without PiP With PiP

P3

P1

P1 P3

B1

τ1

τ2

τ3

P2

DETI * STR 2014/2015 11

PIP – Priority Inheritance Protocol

-
Pr

io
ri

ty
 +

Direct blocking

Indirect
blocking

e.g. S1 S2 S3

τ1 1 2 0

τ2 0 9 3

τ3 8 7 0

τ4 6 5 4

τ1

τ2

τ3
P3

P1

P1

P2

P3

B1

To bound the blocking time (B) it is important to note that a task can be
blocked by any lower priority task which:

– Shares a resource with it (direct blocking), or

– Can block a task with higher priority (push-through or
indirect blocking)

● Note also that in the absence of chained accesses:

– Each task can block any other task just once

– Each task can block only once in each resource

DETI * STR 2014/2015 12

Schedulability analysis (RM)

PIP – Priority Inheritance Protocol

e.g. S1 S2 S3

τ1 1 2 0

τ2 0 9 3

τ3 8 7 0

τ4 6 5 4

e.g. Ci Ti Bi

τ1 5 30 17

τ2 15 60 13

τ3 20 80 6

τ4 20 100 0

∀1≤i≤n∑
k=1

i C k

T k

+
Bi

T i

≤i(2
1
i −1)

∑
i=1

n C i

T i

+ max
i=1... n

Bi

T i

≤n (2
1
n−1)

Rwci
=C iBi∑

k=1

i−1

⌈
Rwci

T k

⌉Ck

DETI * STR 2014/2015 13

PIP – Priority Inheritance Protocol
-

P
ri

or
it

y
+

Deadlock due to resource
nesting

τ1

τ2

τ3

Properties:
● Relatively easy to implement

– One additional field on the TCB, the inherited priority

● Transparent to the programmer
– Each task only uses local information

● Suffers from chain blocking and does not prevent deadlocks

DETI * STR 2014/2015 14

PCP – Priority Ceiling Protocol

C(S1)=P1
C(S2)=P1
C(S3)=P2

-
Pr

io
ri

ty
 + τ1

τ2

τ3

Ceiling blockingDirect blocking

Extension of PIP with one additional rule about access to free semaphores,
inserted to guarantee that all required semaphores are free.

● For each semaphore is defined a priority ceiling, which equals the
priority of the maximum priority task that uses it.

● A task can only take a semaphore if this one is free and if its priority is
greater than the ceilings of all semaphores currently taken.

Take S3 Release S3

Take S2 Release S2Task
τ3

DETI * STR 2014/2015 15

e.g. S1 S2 S3

τ1 1 2 0

τ2 0 9 3

τ3 8 7 0

τ4 6 5 4

PCP – Priority Ceiling Protocol
-

P
ri

or
it

y
+ τ1

τ2

τ3

● The PCP protocol only allows the access to the first semaphore when all
other semaphores that a task needs are free

● To bound the blocking time (B) note that a task can be blocked by any
lower priority task that uses a semaphore which has a ceiling at least
equal to its own priority

● Note also that each task can only be blocked once

DETI * STR 2014/2015 16

e.g. S1 S2 S3

τ1 1 2 0

τ2 0 9 3

τ3 8 7 0

τ4 6 5 4

e.g. Ci Ti Bi

τ1 5 30 9

τ2 15 60 8

τ3 20 80 6

τ4 20 100 0

PCP – Priority Ceiling Protocol

Schedulability analysis (RM)

∀1≤1≤n∑
k=1

i Ck

T k

Bi

T i

≤i2
1
i −1

∑
1=1

n C i

T i

max
i=1...n

Bi

T i

≤n2
1
n−1

Rwci
=C iBi∑

k=1

i−1

⌈
Rwci

T k

⌉Ck

Same equations as for PiP!

Only the computation of Bi varies

DETI * STR 2014/2015 17

PCP – Priority Ceiling Protocol

Properties:
● Smaller blocking than PIP, free of chain blocking and deadlocks
● Much harder to implement than PiP. On the TCB it requires one

additional field for the inherited priority and another one for the
semaphore where the task is blocked. To facilitate the transitivity of the
inheritance it also requires a structure to the semaphores, their
respective ceilings and the identification of the tasks that are using them

● Moreover, it is not transparent to the programmer as the semaphore
ceilings are not local to the tasks

There is one version for EDF in which all the blocking tasks inherit the
deadline of the blocked ones and the semaphore ceilings use the relative

deadlines to establish a preemption level.

DETI * STR 2014/2015 18

SRP – Stack Resource Policy

C(S1)=π1
C(S2)=π1
C(S3)=π2

-
Pr

ee
m

pt
io

n
+

 le

ve
l

τ1

τ2

τ3

Preemption blocking

π2 π1 π2 π1 π2 π1 π2 − π2 −−
System ceiling

● Similar to PCP, but with one rule about the beginning of execution, to
guarantee that all required semaphores are free

● Uses also the concept of priority ceiling

● Defines the preemption level (π) as the capacity of a task to cause
preemption on another one (static parameter).

● A task may only start executing when its own preemption level is
higher than the one of the executing task and also higher than the
ceilings of all the semaphores in use (system ceiling).

DETI * STR 2014/2015 19

e.g. S1 S2 S3

τ1 1 2 0

τ2 0 9 3

τ3 8 7 0

τ4 6 5 4

SRP – Stack Resource Policy
-

Pr
ee

m
pt

io
n

+

 L

ev
el

τ1

τ2

τ3

Preemption blocking

π2 π1 π2 π1 π2 π1 π2 − π2 −−
System ceiling

● The SRP protocol only allows that a task starts executing when all
resources that it needs are free

● The upper bound of the blocking time (B) is equal to the one of the PCP
protocol, but it occurs in a different time - at the beginning of the
execution instead of at the shared resource access.

● Each task can block only once by any task with a lower preemption
level that uses a semaphore whose ceiling is at least equal to its
preemption level.

DETI * STR 2014/2015 20

e.g. S1 S2 S3

τ1 1 2 0

τ2 0 9 3

τ3 8 7 0

τ4 6 5 4

e.g. Ci Ti Bi

τ1 5 30 9

τ2 15 60 8

τ3 20 80 6

τ4 20 100 0

Schedulability analysis (RM)

SRP – Stack Resource Policy

Schedulability analysis (EDF)

∀1≤1≤n∑
k=1

i Ck

T k

Bi

T i

≤i 2
1
i −1

∑
1=1

n C i

T i

max
i=1...n

Bi

T i

≤n 2
1
n−1

Rwci
=C iBi∑

k=1

i−1

⌈
Rwci

T k

⌉C k

∀1≤1≤n∑
k=1

i Ck

T k

Bi

T i

≤1

∑
1=1

n C i

T i

max
i=1...n

Bi

T i

≤1

∑
1=1

n C i

T i

max
i=1...n

Bi

T i

≤n 2
1
n−1

Only varies the way Bi

is computed

DETI * STR 2014/2015 21

SRP – Stack Resource Policy

Properties:
● Smaller blockings than PiP, free of chain blockings and deadlocks

● Smaller number of preemptions than PCP, intrinsic compatibility with
fixed an dynamic priorities and to resources with multiple units (i.e., that
allow more than one concurrent access, e.g. buffer arrays)

● The hardest to implement (preemption test much more complex, requires
computing the system ceiling, etc.)

● Not transparent to the programmer (semaphore ceilings, etc.)

DETI * STR 2014/2015 22

Summary of lecture 7

● Access to shared resources: blocking

● The priority inversion: need to bound and analyze

● Basic techniques to allow exclusive access to shared resources

– Disable interrupts, preemption

● Advanced techniques to allow exclusive access to shared resources

– The Priority Inheritance Protocol – PIP

– The Priority Ceiling Protocol – PCP

– The Stack Resource Protocol - SRP

	Aula 7 Acesso exclusivo a rescursos partilhados O acesso exclusivo a recursos partilhados A inversão de prioridades como consequência do bloqueio Técnicas básicas para acesso exclusivo a recursos partilhados Herança de prioridades (Priority Inheritance Protocol – PIP) Protocolo de tecto de prioridades (Priority Ceiling Protocol – PCP) Protocolo de pilha de recursos (Stack Resource Protocol- SRP)
	Aula anterior (6)
	Recursos partilhados com acesso exclusivo
	O fenómeno da inversão de prioridades
	Slide 5
	Técnicas para acesso exclusivo a recursos
	Slide 7
	Slide 8
	Slide 9
	Protocolo de Herança de Prioridades (PIP – Priority Inheritance Protocol)
	Protocolo de Herança de Prioridades (PIP)
	Slide 12
	Slide 13
	Protocolo de Tecto de Prioridades (PCP – Priority Ceiling Protocol)
	Protocolo de Tecto de Prioridades (PCP)
	Slide 16
	Slide 17
	Política de Pilha de Recursos (SRP – Stack Resource Policy)
	Política de Pilha de Recursos (SRP)
	Slide 20
	Slide 21
	Resumo da Aula 7

