
Lecture 9

Other real-time scheduling
issues

Non-preemptive scheduling
Practical aspects related with the implementation of real-time systems

Real-Time Systems

DETI * STR 2014/2015 2

Last lecture (8)

● Joint execution of periodic and aperiodic tasks
● Background execution of aperiodic tasks
● Notion and characteristics of aperiodic task servers
● Fixed priority servers

– Polling Server - PS

– Deferrable Server - DS

– Sporadic Server - SS

● Dynamic priority servers
– Total Bandwidth Server – TBS

– Constant Bandwidth Server - CBS

DETI * STR 2014/2015 3

Non-preemptive scheduling

Non preemptive scheduling consists in executing the jobs until completion,
without allowing its suspension for the execution of higher priority jobs

Main characteristics/advantages:

● Very simple to implement, as it is not necessary to save the
intermediate job's state.

● Stack size much lower (equal to the stack size of the task with higher
requirements)

● No need for any synchronization protocol to access shared
resources, since tasks execute inherently with mutual exclusion

DETI * STR 2014/2015 4

Non-preemptive scheduling

Main characteristics/disadvantages:

● Penalizes the system schedulability, mainly when there are tasks with
long execution times.

● This penalization may be excessive when, simultaneously, the system
has tasks with high activation rates (short periods).

The penalization can be seen as a blocking on the access of a shared
resource, in the case the CPU. This allows using the schedulability tests
previously developed for access to shared resources on preemptive
systems.

In this case,
Bi = maxk ∈lp(i)(Ck)

DETI * STR 2014/2015 5

Non-preemptive scheduling

τ3

τ2

τ1

Rwc2

In addition to considering the corresponding blocking time, there are a few
adaptations that must be made on the response time analysis.

Computation of the Rwci with fixed priorities:

The iterative process is carried out only over I
i
, since once the task starts

executing it will complete without interruption.

∀ i ,Rwc i
=I iCi

I i=Bi∑
k∈hp i

⌊ I i

T k
⌋1∗C k

I i 0=B i∑
k∈hpi

C k

I i(m+ 1)=Bi+ ∑
k∈hpi

(⌊ I i(m)

T k
⌋+ 1)∗C k

DETI * STR 2014/2015 6

τi Ti Ci

1 2 0.5

2 3 0.5

3 6 3

Task properties

t=0 t=2

τ3

τ2

τ1

t=6

t=0 t=2

τ3

τ2

τ1

t=6
Blocking and deadline miss

Non-preemptive scheduling

RM with preemption

RM without preemption

DETI * STR 2014/2015 7

Use of offsets

τi Ti Ci Oi

1 2 0.5 2

2 3 0.5 3

3 6 3 4.5

Task properties

t=0 t=2

τ3

τ2

τ1

t=6

Non-preemptive scheduling

The use of offsets may be particularly effective on the non-preemptive
scheduling, allowing sometimes turning a system schedulable.

Macro-cycle

DETI * STR 2014/2015 8

Other issues of practical importance

When developing real applications, there are several aspects that must be
taken into account, as they have impact on system schedulability.

Examples are:
– The processing cost of internal mechanisms (e.g. tick

handler)

– The overhead due to context switching

– The task execution times

– Interrupt Service Routines

– Deviations on the tasks activation instants

DETI * STR 2014/2015 9

Other issues of practical importance

Evaluating the computational cost of the system tick
– The service to the system tick uses CPU time (overhead),

which is taken from the tasks' execution.

– It is the highest priority activity on the system and can be
modeled by a periodic task.

– The respective overhead (σ) may have a substantial impact
on the system, as it is a part of the CPU availability that is not
available to the application tasks.

DETI * STR 2014/2015 10

Other issues of practical importance

Tick
handler

τ1

Ttick

C0
1

C1
1

σ

This technique gives
an average value for σ !

Evaluating the computational cost of the system tick
– Can be measured either directly or via the timed execution of

a long function, executed with and without tick interrupts
(period Ttick) and measuring the difference on the execution
times (C0

1 e C1
1 respectively).

In this case,

=
C1

1
−C1

0

⌈ C1
1

T Tick
⌉

DETI * STR 2014/2015 11

Other issues of practical importance

τ2

τ1

T2

C0
1

C1
1

Evaluating the cost of context switches
– Context switches also require CPU time to save and restore

the tasks' context.

– A simple way of measuring this overhead (δ) consists in using
two tasks, a long one (τ1) and another one with higher priority
(τ2), quick (period T2) and empty (no code). Then it is only
required measuring the execution time of the first task alone
(C0

1) and together with the second one (C1
1).

– In this case, =
C1

1
−C1

0

⌈C1
1

T 2
⌉

DETI * STR 2014/2015 12

Other issues of practical importance

t=0 t=2

τ3

τ2

τ1

t=6

Pessimism (the overhead is take into account twice)

Evaluating the cost of context switches (cont.)
– A simple (but pessimistic) way of taking into account the

overhead due to context switching (δ) consists in adding that
time to the execution time of the tasks. This way it is taken
into account not only the context switching overhead due to
the task itself as well as the one relative to all context
switches that may occur.

DETI * STR 2014/2015 13

Other issues of practical importance

Evaluating the task's execution time
– Can be made via source code analysis, to determine the

longest execution path, according with the input data.

– Then the corresponding object code is analyzed to determine
the require CPU cycles

● Note that the execution time of a task may vary from instance to
instance, according with the input data or internal state, due to presence
of conditionals and cycles.

DETI * STR 2014/2015 14

Other issues of practical importance

Evaluating the task's execution time (cont.)
● It is also possible execute the tasks in isolation and in a controlled

fashion, feeding it with adequate input data and measuring its execution
time on the target platform.

– This experimental method requires extreme care to make
sure that the longest execution paths are reached, a
necessary condition to obtain an upper bound on the
execution time!

● Current complex processors use features like pipelines and caches
(data and/or instructions) that improve dramatically the average
execution time but that present an increased gap between the average
and the worst-case scenarios.

– For these cases are used specific analysis that try to reduce
the pessimism, e.g. by bounding the maximum number of
cache misses and pipeline flushes, according with the
particular instruction sequences.

DETI * STR 2014/2015 15

Other issues of practical importance

Execution time histogram
BCET

WCET

Estimated WCET
(e.g. Percentil 99)

Evaluating the task's execution time (cont.)
– Nowadays there is an growing interest on stochastic

analysis of the execution times and respective impact in
terms of interference.

– The basic idea consists in determining the distribution of the
probability of the execution times and use an estimate that
covers a given target (e.g. 99% of the instances).

– In many cases (mainly when the worst case is infrequent and
much worst than the average case) this technique allows
reducing drastically the impact of the gap between the
average execution time and the WCET (higher efficiency)

DETI * STR 2014/2015 16

Other issues of practical importance

Impact of Interrupt Service Routines
– Generally, the Interrupt Service Routines (ISR) execute

with an higher priority level than all other system tasks.

– Therefore, on a fixed priority system, the respective impact
can be taken directly into account, by including these ISR as
tasks in the schedulability analysis.

– In systems with dynamic priorities the situation is much
more complex (e.g. how to assign deadlines?). In these
cases it is usually considered that the time windows in which
such ISR execute are not available for normal tasks
execution. This can be taken into account in the CPU load
analysis.

DETI * STR 2014/2015 17

Other issues of practical importance

Impact of the variations on the tasks' activation instants
– Tasks may suffer deviations on the respective activation

instants, e.g. when a task is activated by the completion of
another one, by an external interrupt or by the reception of a
message on a communication port. In such cases the real
time lapse between consecutive activations may vary with
respect to the predicted values – release jitter

– The existence of release jitter must be taken into account in
the schedulability analysis, as in such cases the tasks can
execute during time instants different from the predicted
ones.

τ3

τ2

τ1

Release jitter

DETI * STR 2014/2015 18

Other issues of practical importance

Impact of the variations on the tasks' activation instants
– The presence of release jitter can be modeled by the

anticipation of the activation instants of the following task
instances.

Computing the Rwci with release jitter (J
k
) for preemptive systems scheduled

with fixed priorities

∀ i , Rwci= I i+C i , with I i= ∑
k∈hp(i) ⌈

Rwci+J k

T k ⌉∗Ck

Rwc i0= ∑
k∈hp i 

C kC i

Rwc im1= ∑
k∈hp i ⌈

RwcimJ k

T k
⌉∗C k C i

DETI * STR 2014/2015 19

Summary of lecture 9

Other real-time scheduling issues
– Non-preemptive scheduling

– Practical aspects related with the implementation of real-
time systems

	Aula 9 Outros aspectos do escalonamento de tempo-real Escalonamento sem preempção Questões de aplicação prática em sistemas reais
	Aula anterior (8)
	Escalonamento sem preempção
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Aspectos de implementação prática
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Resumo da Aula 9

