
DETI - STR 15/16 1

Lecture 2

Computational Models

Task models with explicit temporal constraints
Logic and temporal control (event -ET and time -TT)

Real-Time Systems

Adapted from the slides developed by Prof. Luís Almeida for the course
“Sistemas de Tempo-Real”

DETI - STR 15/16 2

Previous lecture (1)

● Refreshing our memory ...
● Notion of real-time and real-time system

● Antagonism between real-time and best effort

● Objectives of the study of RTS – how to guarantee the adequate
temporal behavior

● Aspects to consider: execution time, response-time and regularity of
periodic events

● Requirements of RTS: functional, temporal and dependability

● Notion of real-time database

● Constraints soft, firm and hard, and hard real time vs soft real time

● The importance of consider the worst-case scenario

DETI - STR 15/16 3

Computational models

programInput data Output
data

program

Data
stream

Transformational model

According to which a program begins and ends,
turning data into results or output data.

Reactive model

According to which a program may execute indefinitely a sequence of
instructions, for example operating on a data stream.

Real-time model

Reactive model in which the program has to keep

synchronized with the input data stream, which thus

imposes time constraints to the program.

DETI - STR 15/16 4

Real-time model

begin

end

Task code

C (WCET)

Worst-Case Execution Time

time

Activation of the several instances (jobs)
n n+1 n+2

Definition of task (process, thread, activity)

Sequence of activations (instances or jobs), each consisting of a set of
instructions that, in the absence of other activities, is performed by the CPU
without interruption.

DETI - STR 15/16 5

Real-time model

time0 TΦ

time0 mitmit

time0

J0 J1 J2

J0 J1 J2 J3

J0 J1 J3 J4J2

Concerning the periodicity, tasks can be classified as:

● periodic

instance n activated at an=n*T+Φ

● sporadic

Minimum inter-arrival time (mit)

● aperiodic

Only characterizable by means of probabilistic arguments

DETI - STR 15/16 6

Real-time model

tempo0

T ou mitΦ

a0 f0

C

s0 a1 f1
s1

c0(t)t

Task characterization

● C – worst-case execution time (WCET)

● T – period (if periodic)

● Φ – relative phase = offset of 1st activation (if periodic)

● mit – minimum inter-arrival time (if sporadic)

● an – activation instant of the nth instance

● sn – start time of the nth instance

● fn – finish time of the nth instance

● cn(t) – maximum residual execution time of the nth instance at time t

DETI - STR 15/16 7

Real-time model
The task constraints can be:

● Temporal – limits the temporal moments of termination or generation of
certain output events.

● Precedence - establish a certain order of execution between tasks.

● Use of resources - need to use shared resources (e.g. communication
ports, a buffer in shared memory, global variables, system peripherals).
May involve the use of atomic operations (whose sequence can not be
interrupted)

DETI - STR 15/16 8

Real-time model
Preemption

● When a task can be interrupted temporarily for execution of other higher
priority task, it is said that it admits preemption.

● When a system uses the preemption property of the tasks that it executes,
it is designated preemptive.

● A set of tasks is said to admit full preemption when preemption is
admitted by all tasks at any point in its execution (independent tasks)

● Note: access to shared resources (tasks with dependencies) may restrict
the preemptiveness of tasks.

DETI - STR 15/16 9

Real-time model

Task2

Task1

Task2

Task1
Higher
priority

Higher
priority

With preemption

Without preemption

DETI - STR 15/16 10

Real-time model
The temporal constraints can be of several types:

● Deadline – Upper bound on the maximum finish time of a task

● Window – Upper and lower bounds on the finish time of a task

● Synchronization – Bound on the temporal difference between the
generation of two input/output events

● Distance – Limit on the delay (distance) between the the termination and
the activation of two consecutive instances of a task
(e.g., change the engine lubricant of a car every 30000Km)

– Deadline is by far the most common temporal constraint

DETI - STR 15/16 11

Activation Deadline

D

Execution

D D

∀n, fn - an < D (relative)
∀n, fn < dn (absolute)

Real-time model

fn fn+1 fn+2
an an+1 an+2dn dn+1 dn+2

xn(t)

xn(t) = slack

xn(t) = dn – t – cn(t)

cn(t)t

cn(t) = upper bound on the
remaining executon time
at time t

Ln = fn – dn = delay of the nth activation

Ln <= 0 on time termination

Ln > 0 late termination

Ln+2

DETI - STR 15/16 12

Activation Window

Dmax

fn fn+1 fn+2

Dmin

∀n, D min < f n - a n < D max

Real-time model

an an+1 an+2

DmaxDmin DmaxDmin

DETI - STR 15/16 13

Activation Synchronization

t1
n

Output events
∀n, t2

n – t1
n < Dsinc

t2
n

Real-time model

an an+1 an+2

Dsinc

t1
n+1 t2

n+1 t1
n+2 t2

n+2

Dsinc Dsinc

DETI - STR 15/16 14

distn

Activation Distance ∀n, dist n = fn+1 - fn < distmax

distmax

distn+1 distn+2

Real-time model

an an+1 an+2 an+3 an+4fn fn+1 fn+2 fn+3

distmax

distmax

DETI - STR 15/16 15

Real-time model
Example of task characterization:

● Periodic: τi = τi (Ci,Φi,Ti,Di)

 τ1 = τ1 (2,5,10,10) τ2 = τ2 (3,10,20,20)

● Sporadic: Similar to periodic, but miti replaces Ti

 and Φi usually is not used (tough it could be used to specify a minimum delay until the

first activation).
τi = τi (Ci,miti,Di)

 τ1 = τ1 (2,5,5) τ2 = τ2 (3,10,7)

DETI - STR 15/16 16

Implementation of real-time applications

When the software structure of a real-time application involves only:

● a main cycle and, eventually,

● a reduced number of asynchronous activities
(which may be encapsulated in interrupt service routines)

The software is often implemented directly on the CPU, without resorting to
any intermediate SW structures, like operative systems and kernels.

DETI - STR 15/16 17

Implementation of real-time applications

In the case of direct programming on the CPU, the triggering of activities is
usually done by interruptions

● Periodic interruptions (via timers) for periodic activities. These interrupts
are used to count time.

● Asynchronous interrupts (communications, external, etc.) for activities
triggered by events (changes in system status, e.g., triggering an alarm,
reception of data over a communication interface, operator action)

DETI - STR 15/16 18

Implementation of real-time applications

However, the use of interrupts:

● Imposes an additional computational cost, required to save the state of
the CPU whenever an interrupt occurs (i.e., save the CPU context so the
application can be resumed latter)

● Reduces the computational capacity available to execute the interrupted
program. The more interruptions arise the slower the program runs.
Ultimately, the program execution can be completely blocked.

DETI - STR 15/16 19

Implementation of real-time applications

The use of interrupts may be made with or without nesting

● With nesting – interrupt service routines (ISR) can be interrupted by
higher priority ISRs

– Harder to bound the stack size

– Better response time to high priority ISRs

● Without nesting – once started, each ISR executes until its end, without
being interrupted. All other pending interrupts are delayed.

– Opposed characteristics with respect to the previous case

– Note that high-priority ISRs are blocked by lower-priority ones

DETI - STR 15/16 20

Implementation of real-time applications

On the other hand, when the application involves multiple activities,
asynchronous or not:

● the respective programming is facilitated by the use of Operating
Systems or multi-task executives which directly support multiple tasks
that can run independently or sharing of system resources.

Each activity is encapsulated in a task.

DETI - STR 15/16 21

Multi-task executives
The application programming using the support of SW structures like
Executives or Operating Systems enables:

– Higher level of abstraction

– Reduced dependence on the HW

– Easier maintenance of SW

Notes:

● Even in these cases, the triggering of tasks is done by interrupts, via a
periodic interrupt that provides a periodic measurement of time for the OS
or Executive (tick).

● It is also possible to use asynchronous interrupts, although they are
usually encapsulated in device drivers.

DETI - STR 15/16 22

Multi-task executives
The processing associated with a given activity can be performed:

● At the level of ISR

– Does not take advantage of certain benefits of OS or Executive
(low-level programming - very dependent on HW)

– High reactivity to external events (micro-seconds ...)

– Large interference suffered by tasks

– Limited # of ISRs

● At the level of a task

– Takes advantage of the OS or Executive (high-level
programming, less dependent on HW, better maintenance)

– Lower reactivity to external events (higher overhead)

– Lower disturbance on tasks

DETI - STR 15/16 23

Multi-task executives

Processing:

• At ISR

(non standard)

• At task level

(standard)

Task1

ISR
1 initializ.

while (1) { }

ISR1

Sampling
Processing
Actuation

 Task
1

ISR1 initialization

while (1) {
 Sampling
 Processing
 Actuation
 sleep ()

 }

ISR1

interrupt

interrupt

signal

Device driver

Device driver

DETI - STR 15/16 24

Multi-task executives
Classification of OSes and executives regarding temporal guarantees

● Non-Real Time (time-sharing)
(eg, Unix, Linux, Windows NT, follow the transformational model)

– Can not bound the response time to an event (e.g., due to
swapping, blocking access to peripherals, scheduling that
favors equitable distribution of CPU)

● Soft Real-Time
(eg OS9, some Linux / Windows services)

– Use techniques from real-time (excluding virtual memory, fast
IPC mechanisms and reduced blockages, short system calls)
but offer no temporal guarantees (best-effort type)

● Hard Real-Time
(e.g. SHaRK, Xenomai/RTLinux, QNX, VxWorks, FreeRTOS, ...)

– Provide temporal guarantees

DETI - STR 15/16 25

Logic and temporal control

● Logic control

– Control of the program flow, i.e., the effective sequence of
operations to be performed (e.g. described by a flowchart) -
crucial to determine C (WCET)

● Temporal control

– Control of the instants of execution of program operations
(e.g., triggering of activities, monitoring of the compliance with
the time constraints, ...)

DETI - STR 15/16 26

Temporal control
Triggering of activities

● By time (time-triggered)

– The execution of an activity (function) is triggered via a control
signal based on the progression of time (e.g., through a
periodic interrupt).

● By events (event-triggered)

– The execution of activities (functions) is triggered through an
asynchronous control signal based on the change of system
state (e.g., through an external interrupt).

DETI - STR 15/16 27

Temporal control
Systems triggered by the progression of time

time-triggered (TT) systems

● Typical in control applications (sampling of analog variables).

● There is a common time reference (allows establishing phase relations)

● CPU utilization is constant, even when there are no changes in the
system state.

Worst case situation is well-defined

DETI - STR 15/16 28

Temporal control
Systems controlled by the occurrence of events on the environment

event-triggered (ET) systems

● Typical of sporadic conditions monitoring on the system state (e.g., alarm
verification or asynchronous requests).

● Utilization rate of the the computing system (eg CPU) is variable,
depending on the frequency of occurrence of events.

– Ill-defined worst case situation. Implies:

● use of probability arguments
● limitation on the maximum rate of events

DETI - STR 15/16 29

Temporal control
● Example

– For the following task sets compute the maximum delay that
each task may suffer:

● TT {τi = τi (Ci=1, Φi=i, Ti=5, Di=Ti i=1..5)}

● ET {τi = τi (Ci=1, (Φi=0), miti=5, Di=miti i=1..5)}

– Compute the average and maximum CPU utilization rate for
both cases. Admit that, on average, ET tasks are activated
every 100 time units.

Note: the CPU utilization is given by:

U=∑
i=1

N Ci

T i

DETI - STR 15/16 30

Summary of lecture 2

● Computational models (real-time model)

● Real-time tasks: periodic, sporadic and aperiodic

● Temporal constraints of types: deadline, window, synchronization and
distance

● Implementation of tasks using multitasking kernels

● Logic and temporal control

● Event-triggered and time-triggered tasks

	Aula 2 Modelos computacionais Modelos de tarefas com restrições temporais explícitas, implementação Controlo lógico e temporal (por eventos -ET e por tempo -TT)
	Aula anterior (1)
	Modelos computacionais
	Modelo de tempo-real
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Implementação de aplicações de tempo-real
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Executivos Multi-Tarefa
	Slide 22
	Slide 23
	Slide 24
	Controlo lógico e controlo temporal
	Controlo temporal
	Slide 27
	Slide 28
	Slide 29
	Resumo da Aula 2

