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Basic scheduling techniques
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Last lecture (3)

ne kernels

‘s The task states

— States and transition diagram

The generic architecture of a RT kernel
The basic components of a RT kernel, its structure and functionalities
Some examples: RTKPIC18, SHaRK and XENOMAI



Temporal complexity

Measurement of the growth of the execution time of an algorithm as a
“function of the problem size ( e.g. the number of elements of a vector,
the number of tasks of a real-time system)

 Expressed via the O( ) operator (big O notation)

« O() arithmetic, n=problem dimension, k=constant

- O(k) = O(1)

- O(kn) = O(n)

- O(k;n™+k,n™+,. . +k.,) = O(n™)

Computation of the
for (k=0;k<N-1;k++) permutations of a set
for (k=0;k<N:k++) for (m=k;m<N;m++) A={a;, i=1..N}
alk]=0; if a[k]<a[m] e
ompl. = O(N) swap(a[k],a[m]); ompl. = O(N™)
just

Compl. = O(N?) another
“ETinie




Temporal complexity

Build all possible schedules with 3 tasks.

. Build all possible schedules with 4 tasks.

ments ...



Temporal complexity

1 NP classes in decision problems
P — problem that can be solved in polynomial time, O(p(N))

NP — problem that cannot be solved in polynomial time but for which a
solution can be tested in polynomial time

« NP-complete

* No “quick” solutions are known.
- NP-hard

« At least as hard has NP, but not necessarily of NP
type.

The temporal complexity is an important measurement of the
performance of algorithms (e.g. scheduling algorithms)



Scheduling Definition

scheduling

Seqguence of task executions in one or more processors

« Application of R* (time) in N,* (task set), assigning to each time instant “t”

a task “I” that executes in that time instant.
O RN
I= a(t), tHR* (i=0 => idle processor)

. s (t) is a step function, that has the form of a Gantt graph

J={J1, 5, J3} o)
(task set) > 2

1 ------------ _\

\4




Scheduling Definition

. \schedule is called feasible if it fulfills all the task
- requirements

- temporal, non-preemption, shared resources,
precedences, ...

_ A task set is called schedulable if there is at least one
- feasible schedule for that task set



The scheduling problem

(easy to formulate, hard to solve)

- Atask set
- Requirements of the tasks (or cost function)
 Find a time attribution of processor(s) to tasks so that:

- Tasks are completely executed, and

- Meet they requirements (or minimize the cost function)

. J={Ji (C=1,a=1,D=5,i=1.5)} > o,

B~ Ul
—>—>
4—

»

»
L »

< < <
<1

—= N W

> Just
another
€.

ample 8



Scheduling problem

:, Build a Gantt diagram of the execution of the following
- periodic tasks, admitting D.=T. and no preemption.

_ - 1={(1.5)(6;10)}
- Is the execution order important? Why?



Scheduling algorithms

A C.eduling algorithm is a method for solving the scheduling
- problem.

- Note: don't confuse scheduling algorithm (the
process/method) with schedule (the result)

Classification of scheduling algorithms:

- Preemptive vs non-preemptive
- Static vs dynamic (priorities)

- Off-line vs on-line

- Optimal vs sub-optimal

- With strict guarantees vs best effort

10



Basic algorithms

‘Earliest Due Date (Jackson, 1955)

; Single instance tasks fired synchronously:
J= { ‘Ji (Ci’ (ai=0,) D,) |=1n}

e EXxecuting the tasks by non-decreasing deadlines minimizes the
maximum lateness L., (J) = max; (fi- d)

Complexity: O(n.log(n))

Q
[s2|
g
g
~

—
~—

v
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Basic algorithms

= _ Earliest Deadline First (Liu and Layland, 1973; Horn, 1974)

] Single instance or periodic, asynchronous arrivals, preemptive:
J= { ‘Ji (Ci’ ad;, D,) |:1n)}

« Always executing the task with shorter deadline minimizes the
maximum latency L. (J) = max; (f;- d;)

Complexity: O(n.log(n)), Optimal among all scheduling algorithms of this
class

Oppr(t) 4

L

J ={J.(1,0,5), J,(2,1,5), J5(1,2,3), J.(2,1,8)}
epr(J) = -2

olk,r DN Wh
-«
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Basic algorithms

. nch and Bound (Bratley, 1971)

. Single instance or periodic tasks, asynchronous arrivals, non-preemptive:
J= { ‘Ji (Ci’ ad;, D,) |:1n}

« Based on building an exhaustive search in the permutation tree space,
finding all possible execution sequences:

Complexity: O(n!)

% : =05 1,(2,1,3), J;(1,2 %8 1 (2 10
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Periodic task scheduling

easelactivation instants are known a priori

=fE o D Sl 3 @ (chTnk=1,2,...

Thus, in this case the schedule can be built:

 With the system executing (on-line)
Tasks to execute are selected as they are released/finished, during
normal system operation

Before the system enters in execution (off-line)

- The task execution order is computed before the system enters in normal
- operation and stored in a table, which is used at execution time to
axecute the tasks (static cyclic scheduling).

14



he table is organized in micro-cycles (UC) with a
“fixed duration. This way it is possible to release tasks
periodically

The micro-cycles are triggered by a Timer

Scanning the whole table repeatedly generates a
periodic pattern, called macro-cycle (MC)

={1 (C, &, T, D;, i=1..n)}

MC = GCD(T) (GCD) ®, =0 ,C;=1ms,

MC = MCM(T;) (LCM) T,=5ms
T,=10ms
T;=15ms

A

MC

>

(e

B FH BE FB
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Static cyclic scheduling

Very simple implementation (timer+table)
« Execution overhead very low (simple dispatcher)

e Permits complex optimizations
(e.g. jitter reduction, check precedence constraints)

ons

Doesn't scale (changes on the tasks may incur in massive changes on
the table. In particular the table size may be prohibitively high)

ensitive to overloads, which may cause the “domino effect”, i.e.,
sequence of consecutive tasks failing its deadlines due to a bad-
)ehaving task.

16



Static cyclic scheduling

"build the table:

Compute the micro and macro cycles (uC and MC)

Express the periods and phases of the tasks as an integer number of
micro-cycles

« Compute the cycles where tasks are activated

Using a suitable scheduling algorithm, determine the execution order of
the ready tasks

Check if all tasks scheduled for a give micro-cycle fit inside the cycle.
. Otherwise some of them have to be postponed for the following cycle(s)

t may be necessary to break a task in several parts, so that that each
e of them fits inside the respective micro-cycle

17



Summary of Lecture 5

he concept of temporal complexity

‘s Definition of schedule and scheduling algorithm

Some basic scheduling techniques (EDD, EDF, BB)

The static cyclic scheduling technique

18
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