Real-Time Systems

Lecture 4

Scheduling basics

Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling

DETI - STR 2015/2016

Last lecture (3)

Real-time kernels

- The task states
 - States and transition diagram
- The generic architecture of a RT kernel
- The basic components of a RT kernel, its structure and functionalities
- Some examples: RTKPIC18, SHaRK and XENOMAI

Temporal complexity

- Measurement of the growth of the execution time of an algorithm as a function of the problem size (e.g. the number of elements of a vector, the number of tasks of a real-time system)
- Expressed via the O() operator (big O notation)
- O() arithmetic, n=problem dimension, k=constant
 - O(k) = O(1)
 - O(kn) = O(n)
 - $O(k_1 n^m + k_2 n^{m-1} + ... + k_{m+1}) = O(n^m)$

for (m=k;m<N;m++) if a[k]<a[m] swap(a[k],a[m]); Compl. = O(N²)

for (k=0;k<N-1;k++)

DETI - STR 2015/2016

3

Temporal complexity

What is the complexity of scheduling tasks?

• Build all possible schedules with two tasks.

- E.g. {1,2} {2,1}

- Build all possible schedules with **3 tasks**.
- Build all possible schedules with 4 tasks.

Comments ...

Temporal complexity

P and NP classes in decision problems

- P problem that can be solved in polynomial time, O(p(N))
- NP problem that cannot be solved in polynomial time but for which a solution can be tested in polynomial time
 - NP-complete
 - No "quick" solutions are known.
 - NP-hard
 - At least as hard has NP, but not necessarily of NP type.

The temporal complexity is an important measurement of the performance of algorithms (e.g. scheduling algorithms)

Scheduling Definition

Task scheduling

- Sequence of task executions in one or more processors
- Application of R⁺ (time) in N₀⁺ (task set), assigning to each time instant "t" a task "i" that executes in that time instant.

 $\sigma: \mathbb{R}^+ \to \mathbb{N}_0^+$ i= $\sigma(t), t \in \mathbb{R}^+$ (i=0 => idle processor)

 $\sigma(t)$ is a step function, that has the form of a Gantt graph

Scheduling Definition

- A schedule is called feasible if it fulfills all the task requirements
 - temporal, non-preemption, shared resources, precedences, ...
- A task set is called schedulable if there is at least one feasible schedule for that task set

The scheduling problem (easy to formulate, hard to solve)

• Given:

- A task set
- Requirements of the tasks (or cost function)
- Find a time attribution of processor(s) to tasks so that:
 - Tasks are completely executed, and
 - Meet they requirements (or minimize the cost function)

Scheduling problem

 Build a Gantt diagram of the execution of the following periodic tasks, admitting D_i=T_i and no preemption.

 $- \tau = \{(1,5)(6;10)\}$

• Is the execution order important? Why?

Scheduling algorithms

- A scheduling algorithm is a method for **solving** the scheduling problem.
 - Note: don't confuse scheduling algorithm (the process/method) with schedule (the result)
- <u>Classification of scheduling algorithms:</u>
 - Preemptive vs non-preemptive
 - Static vs dynamic (priorities)
 - Off-line vs on-line
 - Optimal vs sub-optimal
 - With strict guarantees vs best effort

Basic algorithms

EDD - Earliest Due Date (Jackson, 1955)

- Single instance tasks fired synchronously: J = { J_i (C_i, (a_i=0,) D_i) i=1...n}
- Executing the tasks by non-decreasing deadlines minimizes the maximum lateness L_{max} (J) = max_i (f_i - d_i)
- Complexity: O(n.log(n))

e.g. $J = \{J_1(1,5), J_2(2,4), J_3(1,3), J_4(2,7)\}$ L_{max,EDD}(J) = -1

Basic algorithms

EDF - Earliest Deadline First (Liu and Layland, 1973; Horn, 1974)

- Single instance or periodic, asynchronous arrivals, preemptive: J = { J_i (C_i, a_i, D_i) i=1..n)}
- Always executing the task with shorter deadline minimizes the maximum latency L_{max} (J) = max_i (f_i - d_i)
- Complexity: O(n.log(n)), Optimal among all scheduling algorithms of this class

e.g.
$$J = \{J_1(1,0,5), J_2(2,1,5), J_3(1,2,3), J_4(2,1,8)\}$$

 $L_{max,EDF}(J) = -2$

Basic algorithms

BB – Branch and Bound (Bratley, 1971)

- Single instance or periodic tasks, asynchronous arrivals, non-preemptive: J = { J_i (C_i, a_i, D_i) i=1..n}
- Based on building an exhaustive search in the permutation tree space, finding all possible execution sequences:
- Complexity: O(n!)

e.g. J = { $J_1(1,0,5)$, $J_2(2,1,3)$, $J_3(1,2,4)$, $J_4(2,1,7)$ }

Periodic task scheduling

The release/activation instants are known a priori

 $\Gamma = \{ \tau_i (C_i, \Phi_i, T_i, D_i, i=1...n) \}$; $a_{i,k} = \Phi_i + (k-1)T_i, k=1,2,...$

Thus, in this case the schedule can be built:

- With the system executing (on-line) Tasks to execute are selected as they are released/finished, during normal system operation
- Before the system enters in execution (off-line) The task execution order is computed before the system enters in normal operation and stored in a table, which is used at execution time to execute the tasks (static cyclic scheduling).

Static cyclic scheduling

- The table is organized in micro-cycles (µC) with a fixed duration. This way it is possible to release tasks periodically
- The micro-cycles are triggered by a Timer
- Scanning the whole table repeatedly generates a periodic pattern, called macro-cycle (MC)

$$\Gamma = \{ \tau_i (C_i, \Phi_i, T_i, D_i, i=1..n) \}$$

$$uC = GCD(T_i) \quad (GCD)$$

 $MC = MCM(T_i) \quad (LCM)$

Static cyclic scheduling

Pros

- Very simple implementation (timer+table)
- Execution overhead very low (simple dispatcher)
- Permits complex optimizations

 (e.g. jitter reduction, check precedence constraints)

Cons

- Doesn't scale (changes on the tasks may incur in massive changes on the table. In particular the table size may be prohibitively high)
- Sensitive to overloads, which may cause the "domino effect", i.e., sequence of consecutive tasks failing its deadlines due to a badbehaving task.

Static cyclic scheduling

How to build the table:

- Compute the micro and macro cycles (µC and MC)
- Express the periods and phases of the tasks as an integer number of micro-cycles
- Compute the cycles where tasks are activated
- Using a suitable scheduling algorithm, determine the execution order of the ready tasks
- Check if all tasks scheduled for a give micro-cycle fit inside the cycle. Otherwise some of them have to be postponed for the following cycle(s)
- It may be necessary to break a task in several parts, so that that each one of them fits inside the respective micro-cycle

Summary of Lecture 5

- The concept of temporal complexity
- Definition of schedule and scheduling algorithm
- Some basic scheduling techniques (EDD, EDF, BB)
- The static cyclic scheduling technique