
DETI - STR 2015/2016 1

Lecture 4

Scheduling basics

Task scheduling - basic taxonomy
Basic scheduling techniques

Static cyclic scheduling

Real-Time Systems

DETI - STR 2015/2016 2

Last lecture (3)

Real-time kernels

● The task states

– States and transition diagram

● The generic architecture of a RT kernel

● The basic components of a RT kernel, its structure and functionalities

● Some examples: RTKPIC18, SHaRK and XENOMAI

DETI - STR 2015/2016 3

Temporal complexity

for (k=0;k<N;k++)
 a[k]=0;

Compl. = O(N)

for (k=0;k<N-1;k++)
 for (m=k;m<N;m++)
 if a[k]<a[m]
 swap(a[k],a[m]);

Compl. = O(N2)

Computation of the
permutations of a set
A={ai, i=1..N}

Compl. = O(NN)

● Measurement of the growth of the execution time of an algorithm as a
function of the problem size (e.g. the number of elements of a vector,
the number of tasks of a real-time system)

● Expressed via the O() operator (big O notation)

● O() arithmetic, n=problem dimension, k=constant

– O(k) = O(1)

– O(kn) = O(n)

– O(k1nm+k2nm-1+...+km+1) = O(nm)

DETI - STR 2015/2016 4

Temporal complexity

What is the complexity of scheduling tasks?
● Build all possible schedules with two tasks.

– E.g.

{1,2}

{2,1}

● Build all possible schedules with 3 tasks.

● Build all possible schedules with 4 tasks.

Comments ...

DETI - STR 2015/2016 5

Temporal complexity

P and NP classes in decision problems

● P – problem that can be solved in polynomial time, O(p(N))

● NP – problem that cannot be solved in polynomial time but for which a
solution can be tested in polynomial time

● NP-complete

● No “quick” solutions are known.

– NP-hard

● At least as hard has NP, but not necessarily of NP
type.

The temporal complexity is an important measurement of the
performance of algorithms (e.g. scheduling algorithms)

DETI - STR 2015/2016 6

Scheduling Definition

t

J3J2J1

t

σ(t)
3
2
1

J={J1, J2, J3}
(task set) 

Task scheduling

● Sequence of task executions in one or more processors

● Application of R+ (time) in N0
+ (task set), assigning to each time instant “t”

a task “i” that executes in that time instant.
σ: R+ → N0

+

i= σ(t), t∈R+ (i=0 => idle processor)

σ(t) is a step function, that has the form of a Gantt graph

DETI - STR 2015/2016 7

Scheduling Definition

● A schedule is called feasible if it fulfills all the task
requirements

– temporal, non-preemption, shared resources,
precedences, ...

● A task set is called schedulable if there is at least one
feasible schedule for that task set

DETI - STR 2015/2016 8

The scheduling problem
(easy to formulate, hard to solve)

t

σ(t)
5
4
3
2
1

1

● Given:

– A task set

– Requirements of the tasks (or cost function)

● Find a time attribution of processor(s) to tasks so that:

– Tasks are completely executed, and

– Meet they requirements (or minimize the cost function)

e.g. J = {Ji (Ci=1, ai=1, Di=5, i=1..5)} 

DETI - STR 2015/2016 9

Scheduling problem

● Build a Gantt diagram of the execution of the following
periodic tasks, admitting D

i
=T

i
 and no preemption.

– τ={(1,5)(6;10)}

● Is the execution order important? Why?

DETI - STR 2015/2016 10

Scheduling algorithms

● A scheduling algorithm is a method for solving the scheduling
problem.

– Note: don't confuse scheduling algorithm (the
process/method) with schedule (the result)

● Classification of scheduling algorithms:

– Preemptive vs non-preemptive

– Static vs dynamic (priorities)

– Off-line vs on-line

– Optimal vs sub-optimal

– With strict guarantees vs best effort

DETI - STR 2015/2016 11

Basic algorithms

t

σEDD(t)

4
3
2
1

0 1 3 4 6

EDD - Earliest Due Date (Jackson, 1955)

● Single instance tasks fired synchronously:
 J = { Ji (Ci, (ai=0,) Di) i=1..n}

● Executing the tasks by non-decreasing deadlines minimizes the
maximum lateness Lmax (J) = maxi (fi - di)

● Complexity: O(n.log(n))

e.g. J = {J1(1,5), J2(2,4), J3(1,3), J4(2,7)}

Lmax,EDD(J) = -1

DETI - STR 2015/2016 12

Basic algorithms

t

σEDF(t)

4
3
2
1

0 1 3 4 6

EDF - Earliest Deadline First (Liu and Layland, 1973; Horn, 1974)

● Single instance or periodic, asynchronous arrivals, preemptive:
 J = { Ji (Ci, ai, Di) i=1..n)}

● Always executing the task with shorter deadline minimizes the
maximum latency Lmax (J) = maxi (fi - di)

● Complexity: O(n.log(n)), Optimal among all scheduling algorithms of this
class

e.g. J = {J1(1,0,5), J2(2,1,5), J3(1,2,3), J4(2,1,8)}

Lmax,EDF(J) = -2

DETI - STR 2015/2016 13

2
t=5

Basic algorithms

1

2 4

3

23

4

3

3

4

t=0

t=1

t=3t=3

t=4

t=6t=6

t=5

t=6

t=4

t=6

BB – Branch and Bound (Bratley, 1971)

● Single instance or periodic tasks, asynchronous arrivals, non-preemptive:
 J = { Ji (Ci, ai, Di) i=1..n}

● Based on building an exhaustive search in the permutation tree space,
finding all possible execution sequences:

● Complexity: O(n!)

e.g. J = {J1(1,0,5), J2(2,1,3), J3(1,2,4), J4(2,1,7)}

DETI - STR 2015/2016 14

Periodic task scheduling

The release/activation instants are known a priori

Γ = { τi (Ci, Φi, Ti, Di, i=1..n)} ; ai,k = Φi + (k-1)Ti , k=1,2,...

Thus, in this case the schedule can be built:

● With the system executing (on-line)
Tasks to execute are selected as they are released/finished, during
normal system operation

● Before the system enters in execution (off-line)
The task execution order is computed before the system enters in normal
operation and stored in a table, which is used at execution time to
execute the tasks (static cyclic scheduling).

DETI - STR 2015/2016 15

Static cyclic scheduling

t1
t2
t3
t1

t1
t2

t1
t3

t1
t2

t1

uC

MC

Φi =0 ,Ci =1ms,
T1=5ms
T2=10ms
T3=15ms

● The table is organized in micro-cycles (μC) with a
fixed duration. This way it is possible to release tasks
periodically

● The micro-cycles are triggered by a Timer

● Scanning the whole table repeatedly generates a
periodic pattern, called macro-cycle (MC)

Γ = { τi (Ci, Φi, Ti, Di, i=1..n)}

 μC = GCD(Ti) (GCD)
 MC = MCM(Ti) (LCM)

DETI - STR 2015/2016 16

Static cyclic scheduling

Pros

● Very simple implementation (timer+table)

● Execution overhead very low (simple dispatcher)

● Permits complex optimizations
 (e.g. jitter reduction, check precedence constraints)

Cons

● Doesn't scale (changes on the tasks may incur in massive changes on
the table. In particular the table size may be prohibitively high)

● Sensitive to overloads, which may cause the “domino effect”, i.e.,
sequence of consecutive tasks failing its deadlines due to a bad-
behaving task.

DETI - STR 2015/2016 17

Static cyclic scheduling

How to build the table:

● Compute the micro and macro cycles (μC and MC)

● Express the periods and phases of the tasks as an integer number of
micro-cycles

● Compute the cycles where tasks are activated

● Using a suitable scheduling algorithm, determine the execution order of
the ready tasks

● Check if all tasks scheduled for a give micro-cycle fit inside the cycle.
Otherwise some of them have to be postponed for the following cycle(s)

● It may be necessary to break a task in several parts, so that that each
one of them fits inside the respective micro-cycle

DETI - STR 2015/2016 18

Summary of Lecture 5

● The concept of temporal complexity

● Definition of schedule and scheduling algorithm

● Some basic scheduling techniques (EDD, EDF, BB)

● The static cyclic scheduling technique

	Aula 4 Conceitos básicos de escalonamento Escalonamento de tarefas, taxonomia básica Técnicas de escalonamento preliminares Escalonamento estático cíclico
	Aula anterior (3)
	Complexidade temporal
	Slide 4
	Slide 5
	Definição de escalonamento
	Slide 7
	Problema de escalonamento
	Slide 9
	Algorítmos de escalonamento
	Algorítmos preliminares
	Slide 12
	Slide 13
	Escalonamento de tarefas periódicas
	Escalonamento estático cíclico
	Slide 16
	Slide 17
	Resumo da Aula 5

