
Lecture 8

Aperiodic task scheduling

Joint execution of periodic and sporadic tasks
Use of aperiodic task servers

Fixed-priority aperiodic task servers
Dynamic-priority aperiodic task servers

Real-Time Systems

DETI * STR 2014/2015
2

Last lecture (7)

● Access to shared resources: blocking

● The priority inversion: need to bound and analyze

● Basic techniques to allow exclusive access to shared resources

– Disable interrupts, preemption

● Advanced techniques to allow exclusive access to shared resources

– The Priority Inheritance Protocol – PIP

– The Priority Ceiling Protocol – PCP

– The Stack Resource Protocol - SRP

DETI * STR 2014/2015
3

Joint scheduling of periodic and aperiodic
tasks

Periodic tasks

Suitable e.g. to applications where it is required sampling regularly a given
physical entity (e.g. a temperature, pressure, torque, speed), or actuate
regularly on the system via an actuator.

Aperiodic+sporadic tasks

Suitable to scenarios where the event activation instants cannot be forecast,
e.g. alarms, human-machine interfaces, external asynchronous interrupts.

Hybrid systems

Applications which contain both types of tasks.

Many (most?) real systems contain naturally both periodic and aperiodic
events/tasks

DETI * STR 2014/2015
4

tempo0 TΦ

tempo0 mitmit

tempo0

J0 J1 J2

J0 J1 J2 J3

J0 J1 J3 J4J2

Joint scheduling of periodic and aperiodic
tasks

Periodic tasks

nth task instance activated at an=n*T+Φ (worst-case is well defined)

Sporadic tasks

In worst-case it behaves as a periodic task with period = mit

Aperiodic tasks

– Only characterizable via probabilistic methods

– How to bound the interference on periodic tasks?

– How to guarantee an acceptable/best possible quality of
service (QoS)?

DETI * STR 2014/2015
5

0.5

Background execution

τi Ti Ci

1 3 1

2 4 1

3 6 1

Periodic
tasks

t=0 t=2

τ3

τ2

τ1

t=6

1 0.4
Background

A simple way of combining both task types is giving higher priority to the
periodic tasks than to the sporadic ones.

Thus the sporadic tasks only execute when there are no ready periodic
tasks.

In this case the aperiodic tasks are executed in background with respect to
the periodic ones – background execution.

DETI * STR 2014/2015
6

J1
n

...
J2

kPeriodic tasks J3
i Priority

 +

 _
J1

c
...

J1
bJ2

a

CPU
Aperiodic tasks

Background execution

The background execution is very easy to implement and does not interfere
directly with the periodic system/tasks.

– However, interference may still occur indirectly, via
interrupt service routines, non-preemptive system calls, shared
resources, etc.

On the other hand, aperiodic tasks may suffer big delays, depending on the
periodic load.

– This delay may be upper-bounded considering the aperiodic
tasks as a lowest priority task.

The performance is poor for real-time tasks, tough it can be acceptable to
non real-time ones.

DETI * STR 2014/2015
7

Aperiodic servers

τ2

τS

τ1

0.5 1 0.4

Aperiodic
server

When the background execution service does not allow meeting the real-time
constraints of aperiodic tasks, the response time of these can be improved
by using a pseudo-periodic task whose only function is to execute the active
aperiodic tasks.

This pseudo-task is designated aperiodic server and is characterized by a
period T

S
 and a capacity C

S
.

It is now possible to insert the aperiodic server in the set of periodic tasks and
assign it sufficient priority to provide the required QoS.

DETI * STR 2014/2015
8

Aperiodic servers

● There are many types of aperiodic servers, both based on fixed and
dynamic priorities, which vary in terms of:

– Impact on the schedulability of the periodic tasks

– Average response time to aperiodic requests

– Computational cost/overhead, memory and implementation
complexity.

● Fixed priority: Polling Server, Deferable Server, Priority Exchange
Server, Sporadic Server,...

● Dynamic priorities: Adapted fixed-priority servers, Total Bandwidth
Server, Constant Bandwidth Server, ...

DETI * STR 2014/2015
9

Worst-case response time to aperiodic requests

τS

TS

CS 2*(TS - CS)

Rawci

2.4*CS

Interference due to higher priority tasks

TS - CS

Worst-case response time:

● Equal to all servers that can be modeled by a periodic task

● It is assumed that (worst-case scenario):

– The server is a periodic task τS (CS,TS)

– Suffers maximum jitter on the instant of the aperiodic request

– Suffers maximum delay in all successive instances

Rawci
=Ca iT s−C s∗1⌈ Cai

Cs ⌉ Ca
i
= execution time of

aperiodic task i

DETI * STR 2014/2015
10

Worst-case response time to aperiodic requests

Worst-case response time (cont):

● If there are several aperiodic requests queued for the same
server i (Na

i
), sorted by a suitable criteria, the schedulability test for

aperiodic requests is:

● It is assumed that all requests are issued at the same instant,
which corresponds to the worst-case scenario.

∀ i=1..Na , Rawci
=∑

k=1

i

Cak T s−C s∗1⌈∑k=1

i

Cak

Cs ⌉≤Dai

DETI * STR 2014/2015
11

τS

TS

CS
TS - CS

Rawci

2.4*CS

Worst-case response time to aperiodic requests

Worst-case response time (cont):

● If, in a fixed priority system, the aperiodic server has the highest
priority, the interference term, due to higher priority tasks, disappears,
and the worst-case response time is:

Rawci
=CaiT s−Cs∗⌈ Cai

Cs ⌉

DETI * STR 2014/2015
12

0.4

Polling server (PS)

τ2

τS

τ1

0.5 1

Polling server
(C,T)=(1,4)

● This fixed priority server is completely equivalent to the execution of a
periodic task. The aperiodic requests are served only during the
execution intervals granted to the server by the periodic task scheduler.

DETI * STR 2014/2015
13

Polling server (PS)

● The implementation of a polling server is relatively simple. It only
requires a queue for the aperiodic requests and control of the capacity
used.

● The average response time to aperiodic requests is better than the one
obtained with background execution, since it is possible to elevate the
priority of the server. However it has relatively long unavailability
periods.

● The impact on the periodic task set is exactly the same as the one of a
periodic task. So, e.g., using RM + PS

(U
p
: utilization of n periodic tasks)

U pU s≤n12
1

n1−1

DETI * STR 2014/2015
14

Polling server (PS)

● The previous test (Liu & Layland bound) is independent of the utilization of
each task. It is possible to improve the test (i.e. obtain tighter bounds) for
particular scenarios.

● Giving the highest priority to the server (corresponding utilization rate
US=CS/TS), the L&L least upper bound becomes:

● And when n->∞,

U pU s≤U sn  2
U s1 

1
n−1

U pU s≤U sln  2
U s1 

DETI * STR 2014/2015
15

1
0.4

Deferrable server (DS)

τ2

τS

τ1

0.5

Deferrable server
(C,T)=(1,4)

● The basic idea of this fixed-priority server is to handle aperiodic
requests from the beginning of its execution until:

– End of its period (TS) or

– Its capacity (CS) gets exhausted

● The capacity is replenished at the beginning of each period.

DETI * STR 2014/2015
16

Deferrable server (DS)

● The complexity of the implementation of a DS is similar to the one of a
PS.

● The average response time to aperiodic requests is improved with
respect to the PS, since it is possible to use the capacity of the DS during
the whole period, provided that its capacity is not exhausted.

● However, there is a negative impact on the schedulability of the periodic
tasks. The reason for this impact is that the delayed executions increase
the load on the future. E.g., it is possible having two consecutive
executions (back-to-back execution).

– Using RM+DS and a server with highest priority:

U p+U s≤U s+n((U s+2

2.U s+1)
1
n−1)

DETI * STR 2014/2015
17

Deferrable server (DS)

Illustration of a scenario in which replacing a periodic task by a DS
causes deadline misses

Periodic tasks

Task 1 replaced
by a DS

DETI * STR 2014/2015
18

1
0.4

Sporadic server (SS)

τ2

τS

τ1

0.5

Sporadic Server
(C,T)=(1,4)

● The basic idea of this fixed-priority server is also allow the execution of
the server at any instant (as the DS), however without penalizing the
schedulability of the periodic system.

● The SS replenishes the capacity not at the end of the period but instead
according with the time instants in which the capacity is actually used
(consumption instants + TS)

DETI * STR 2014/2015
19

Sporadic server (SS)

● The implementation complexity of a sporadic server is higher than the
one of PS and DS, due to the computation of the replenishment instants
and, more importantly, to the complex timer management

● The average response time to aperiodic requests is similar to the one of
the DS

● The impact on the schedulability of the periodic tasks is exactly the same
as the one of the PS,

– The SS executes as soon as it has capacity, but the technique
used to replenish the capacity preserves the timing
behavior and bandwidth (unlike the DS).

● Using RM+SS and giving higher priority to the server:

U pU s≤U sn  2
U s1 

1
n−1

DETI * STR 2014/2015
20

1
0.4

Total Bandwidth Server (TBS)

τ2

τS

τ1

0.5

TBS
(US=25%)

● The Total Bandwidth Server is a dynamic priority server which has the
objective of executing the aperiodic requests as soon as possible while
preserving the bandwidth assigned to it, to not disturb the periodic tasks.
It was developed for EDF systems.

● When an aperiodic request arrives (rk), it receives a deadline dk,

dk=max rk , d k−1
C k

U s

DETI * STR 2014/2015
21

Total Bandwidth Server (TBS)

● TBS is simple to implement and has low overhead, since it only requires a
simple computation (deadline for each arrival). Then the aperiodic request
is inserted in the ready queue and handled as any other task.

● The average response time to aperiodic requests is smaller than the
one obtained with dynamic- priority versions of fixed-priority servers.

● The impact on the schedulability of the periodic task set is equal to the
one of a periodic task with utilization equal to the one granted to the
server. Using EDF+TBS:

UP + US ≤ 1

● Requires a priori knowledge of Ck and is vulnerable to overruns.

– After starting executing, a task may execute more time than the one declared

DETI * STR 2014/2015
22

Constant Bandwidth Server (CBS)

● The Constant Bandwidth Server (CBS) is a dynamic priority server
that was crated to solve the robustness problem of TBS, enforcing
bandwidth isolation.

● This goal is achieve by managing the execution time based and
considering a budget/capacity (QS ,TS).

– When an aperiodic request rk arrives, it is computed a server deadline
dS, as follows:

– When the instantaneous capacity (c
s
) gets exhausted, the capacity is

replenished and the deadline postponed:

if rk+
cs

U s

<d s
actual , then d s

actual doesnot change

otherwise d s=rk+T s ,∧ cs=Qs

d s=d sT s , c s=Qs

DETI * STR 2014/2015
23

Constant Bandwidth Server (CBS)

CBS
(Q,T)=(1,4)

● The CBS server assigns deadlines in such a way that prevents the
bandwidth given to the server from being higher the the one assigned to
it.

● If a task executes for longer than expected, its deadline is
automatically postponed, lowering the priority of the task. This can also
be seen as if the task period was artificially increased, in such a way the
the utilization is maintained.

1 0.4

τ2

τS

τ1

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x

DETI * STR 2014/2015
24

1 0.4

Constant Bandwidth Server (CBS)

τ2

τS

τ1

0.5

CBS
(Q,T)=(1,4)

● Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x

t=2.2: d
s
actual < r

k
, thus rule 2 applies

d
s
=r

k
+T

s
=2.2+4=6.2; c

s
=1

t=7.5: d
s
actual < r

k
, thus rule 2 applies

d
s
=r

k
+T

s
=7.5+4=11.5; c

s
=1

t=8.5: c
s
 exhausted, thus rule 3 applies

d
s
=d

s
+T

s
=11.5+4=15.5; c

s
=1

t=10.2: r
k
+c

s
/U

s
=10.2+1/0.25=14.2 < d

s
actual,

thus rule 1 applies
d

s
actual does not change; c

s
=c

s

Rules

• Arrival
If r

k
+c

s
/U

s
 < d

s
actual, d

s
actual doesn't change [R1]

Else d
s
=r

k
+T

s
; c

s
=Q

s
 [R2]

• Cs
 exhausted

d
s
=d

s
+T

s
; c

s
=Q

s
 [R3]

DETI * STR 2014/2015
25

Constant Bandwidth Server (CBS)

● The implementation complexity of CBS is somehow higher than the one
of TBS, due to the need to dynamically manage the capacity. Other than
that, aperiodic tasks are put in the ready queue and handled as any
regular periodic task.

● The average response time to aperiodic requests is similar to TBS.

● The impact on the schedulability of the periodic task set is equal to the
one of a periodic task with an utilization equal to the one given to the
server. Using EDF+CBS

UP + US ≤ 1

DETI * STR 2014/2015
26

Constant Bandwidth Server (CBS)

● The big advantage of CBS is that it provides bandwidth isolation

● If a task is served by a CBS with bandwidth US, in any time interval ∆t that
task will never require more than ∆t*US CPU time.

● Any task τi (Ci,Ti) schedulable with EDF is also schedulable by a CBS
server with QS=Ci e TS=Ti

● A CBS may be used to:

– Protect the system form possible overruns in any task

– Guarantee a minimum service to soft real-time tasks

– Reserve bandwidth to any activity

DETI * STR 2014/2015
27

Summary of lecture 8

● Joint execution of periodic and aperiodic tasks

– Background execution of aperiodic tasks

● Notion and characteristics of aperiodic task servers

– Fixed priority servers

● Polling Server - PS
● Deferrable Server - DS
● Sporadic Server - SS

– Dynamic priority servers

● Total Bandwidth Server – TBS
● Constant Bandwidth Server - CBS

	Aula 8 Escalonamento de tarefas aperiódicas Execução conjunta de tarefas periódicas e aperiódicas Utilização de servidores de tarefas aperiódicas Servidores de prioridades fixas Servidores de prioridades dinâmicas
	Aula anterior (7)
	Conjugar tarefas periódicas e aperiódicas
	Slide 4
	Execução em plano de fundo (background)
	Slide 6
	Utilização de servidores de aperiódicas
	Slide 8
	Resposta de pior caso a pedidos aperiódicos
	Slide 10
	Slide 11
	Servidor de sondagem (polling server - PS)
	Slide 13
	Slide 14
	Servidor adiável (deferrable server - DS)
	Slide 16
	Slide 17
	Servidor esporádico (sporadic server - SS)
	Slide 19
	Servidor de largura de banda total (total bandwidth server - TBS)
	Slide 21
	Servidor de largura de banda constante (constant bandwidth server - CBS)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Resumo da Aula 8

