
DETI/UA ; STR 16/17 1

Real-Time Systems

Faculty

Paulo Pedreiras
pbrp@ua.pt
http://ppedreiras.av.it.pt/

Adapted from the slides developed by Prof. Luís Almeida for the
course “Sistemas de Tempo-Real”

DETI/UA ; STR 16/17 2

Preliminaries

What are real-time systems?
● Computational systems
● Subject to the evolution of real-time

real-time progresses continuously, and the world evolve at its own pace
● Are those for which you can't say

Oh please, lets rewind ...

● Or, in different words, those in which
What is done is done! And there are consequences ...

● Thus, the only way these systems perform correctly is when they
Do the right thing at the right time!

DETI/UA ; STR 16/17 3

Course objectives

Main topic:

• Software infrastructures and programming techniques for systems that interact
with (or simulate a physical process (environment)

so that they can do the right thing at the right time

We will address:

• The source and characterization of the restrictions imposed by the environment
to the temporal behavior of the computational system;

• Approaches to allow the computational system to be aware of the state of the environment
that surround it;

• The scheduling theory of concurrent tasks associated with real-time processes;

• The structure and internal functionality of real-time operating systems/executives

HW

SW
Infrastrutures

ApplicationProgramming
skills

Physical
process

(environmemt)

DETI/UA ; STR 16/17 4

FAQ

Isn't a quick processor sufficient?

• For a simple program, with a single task, that may work. However, when CPUs have
to execute several tasks concurrently, just a quick processor may not be enough!
Some tasks may block others and cause big and/or unpredictable delays.

Then, what do we need?

• Scheduling! which means, select the right task to execute in every instant. There are
some task sorting techniques (scheduling algorithms) that allow predicting and
minimizing the maximum delays that tasks may suffer.

DETI/UA ; STR 16/17 5

FAQ

So all this stuff applies only when we need multi-tasking... ?

• As stated above, we are considering situations where a computer has to perform
several tasks simultaneously. It is normal that in such situations we use one multi-
tasking operating system/kernel. But often, even when the main body of the program is
a simple endless loop, there are various pseudo-tasks, part of asynchronous interrupt
routines, which lead to the same situation. The triggering of the interrupt routines may
also be delayed, or even discarded. We must use proper techniques to bound and
compute these delays.

DETI/UA ; STR 16/17 6

FAQ

Are those delays so important?

• Well, if we're talking about control systems, and if these delays are such that lead to
loss of samples, it is likely that control is lost! If this happens on a plane ... or a car with
electronic actuation (X-by-wire) ... or a robot that moves around other people and
equipment ... or a rocket ... there will be serious damage! On the other hand, if we are
talking about multimedia systems, from games to DVDs, or routers in networks of
computers, delays in tasks shall not cause death to anyone but there will be a loss of
Quality-of-Service.

DETI/UA ; STR 16/17 7

Bibliography

Base

• Giorgio Buttazzo (2011). HARD REAL-TIME COMPUTING SYSTEMS: Predictable Scheduling
Algorithms and Applications, Third Edition, Springer, 2011.

• Kopetz, H. (2011). Real-Time Systems: Design Principles for Distributed Embedded
Applications (Real-Time Systems Series), 2nd Edition , Springer, 2011.

• Xiaocong Fan (2015). Real-Time Embedded Systems: Design Principles and Engineering
Practices, 1st Edition, Springer, 2015

Complementary

• P. Veríssimo and L. Rodrigues (2001). Distributed System for Systems Architects. Kluwer
Academic Publishers.

• Jane W.S. Liu (2000). Real-Time Systems. Prentice Hall.

• Briand, L. and Roy, D.M. (1999). Meeting Deadlines in Hard Real-Time Systems: the Rate-
Monotonic Approach. IEEE Computer Society Press, Los Alamitos (CA), USA. (cont)

DETI/UA ; STR 16/17 8

Bibliography

Complementary (cont.)

• Stankovic, J. et al. (1998). Deadline Scheduling for Real-Time Systems: EDF and Related
Algorithms. Kluwer Academic Publishers.

• Krishna, C.M. and K. Shin (1997). Real-Time Systems. McGraw-Hill.

• N. Nissanke (1997), Real-Time Systems, Prentice-Hall.

• Laplante, P.A., Real-Time Systems Design and Analysis - An Engineer’s Handbook (2nd
ed.). IEEE Press, 1997.

• Welling, A. and A. Burns (1996). Real-Time Systems and Their Programming Languages
(2nd ed.). Int. Computer Science Series, Addison-Wesley.

• Klein, M. et al. (1993), A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate-
Monotonic Analysis for Real-Time Systems. Kluwer Academic Publishers.

• Richard Barry (2011). Using the FreeRTOS Real-Time Kernel - A practical guide, Real-Time
Engineers, Ltd., 2011.

DETI/UA ; STR 16/17 9

Course organization

• Theoretical component – presentation and discussion of concepts and
techniques
● Students should read selected parts of the base bibliography
● Slides are available at the course website
● Presentation and discussion of research works

• Lab component - application of the studied techniques to practical
scenarios
● Groups of 2 students
● Tutorial classes to establish a basic set of practical competences: Linux (GPOS), Xenomai and

FreeRTOS.
● One medium duration project per group

● Suggestions are welcome!

DETI/UA ; STR 16/17 10

Grading

Normal period
● Theoretical component - 50%:

● 40% exam, 10% research work (5% by faculty, 5% by peers)
● Lab component – 50%:

● 25% project, 5% log book, 10% oral presentation + 10% for additional work to the
tutorial sessions

Recourse period:
● Theoretical component – 50%

● Written exam
● Lab component – 50%

● Grade from the normal period or lab exam.

DETI/UA ; STR 16/17 11

Planning (!!!discuss!!!)

Real-Time Systems
2016/2017

Sept 12
Lecture 0+1: course presentation; basic concepts about real-time systems

Sept 19
Lecture 2: Computational models

Sept 26
Lecture 3: Kernels + tutorial GPOS

Oct 3
Lecture 4: basic concepts on scheduling + tutorial Xenomai

Oct 10
Lecture 5: periodic FP scheduling + tutorial Xenomai

Oct 17
Lecture 6: periodic FP scheduling + tutorial Xenomai (conc.)

DETI/UA ; STR 16/17 12

Planning

Oct 24
Lecture 7: shared resources + tutorial FreeRTOS

Oct 31
Lecture 8: aperiodic task scheduling + tutorial FreeRTOS (conc.)

Nov 7
Lecture 9: other issues related with RT scheduling + projects

Nov 14
Lecture 10: optimizations + projects

Nov 21
Lecture 11: projects

Nov 28
Lecture 12: projects

Dec 5
Lecture 13: projects

Dec 12
Lecture 14: projects

Dec 19
Lecture 14: project presentation + final considerations

DETI/UA ; STR 16/17 13

And now

It is time to start working!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

