Fixed Priority Scheduling

- Fixed-priority online scheduling
- Rate-Monotonic scheduling
 - The CPU utilization bound
- Deadline-Monotonic and arbitrary priorities
 - Worst-Case Response-Time analysis
Last lecture (4)

Task scheduling basics

- The concept of temporal complexity
- Definition of schedule and scheduling algorithm
- Some basic scheduling techniques (EDD, EDF, BB)
- The static cyclic scheduling technique
Online scheduling with fixed priorities

The schedule is **built** while the system is operating normally (online) and is based on a **static criterium** (priority).

The **ready queue** is sorted by **decreasing priorities**. Executes first the task with highest priority.

If the system is preemptive, whenever a task job **arrives** to the ready queue, if it has **higher priority** than the one currently executing, it **starts executing** while the latter one is moved to the ready queue.

Complexity: \(O(n) \)
Online scheduling with fixed priorities

- **Pros**
 - Scales
 - Changes on the task set are immediately taken into account by the scheduler
 - Sporadic tasks are easily accommodated
 - Deterministic behavior on overloads
 - Tasks are affected by priority level (lower priority are the first ones)

- **Cons**
 - More complex implementation
 - Requires a kernel with support to fixed priorities
 - Higher execution overhead (scheduler + dispatcher)
 - Overloads (e.g. due to programming errors or unpredicted events) an higher priority tasks may block the execution of lower priority ones
Online scheduling with fixed priorities

Priority assignment to tasks

• Inversely proportional to period (**RM – Rate Monotonic**)

 Optimal among fixed priority scheduling criteria

• Inversely proportional to deadline (**DM – Deadline Monotonic**)

 Optimal if D\(\leq\)T

• **Proportional** to the task importance
 Typically reduces the schedulability – **not optimal**
Online scheduling with fixed priorities

Schedulability tests

As the schedule is built online it is fundamental to know a priori if a given task set is schedulable (i.e., its temporal requirements are met)

There are two types of schedulability tests:

- Based on CPU utilization rate
- Based on response time
Schedulability tests for RM based on task utilization
(with preemption, \(n \) independent tasks, \(D=T \))

• Liu&Layland's (1973) Least Upper Bound

\[
U(n) = \sum_{i=1}^{n} \frac{C_i}{T_i} \leq n \left(2^n - 1 \right) \Rightarrow \text{One execution per period guaranteed}
\]

• Bini&Buttazzo&Buttazzo's (2001) Hyperbolic Bound

\[
\prod_{i=1}^{n} \left(\frac{C_i}{T_i} + 1 \right) \leq 2 \Rightarrow \text{One execution per period guaranteed}
\]
Interpretation of the Liu & Layland test

$U(n) > 1 \Rightarrow$ task set not schedulable *(overload)* — *necessary condition*

$U(n) \leq$ Bound \Rightarrow task set is schedulable — *sufficient condition*

$1 \geq U(n) >$ Bound \Rightarrow test is indeterminate

Liu & Layland

- $U(1) \leq 1$
- $U(2) \leq 0.83$
- $U(3) \leq 0.78$
- ...
- $U(\infty) \leq \ln(2) \approx 0.69$
RM Scheduling – example 1

Task properties

<table>
<thead>
<tr>
<th>τ_i</th>
<th>T_i</th>
<th>C_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Synchronous release

\[U = \frac{0.5}{2} + \frac{0.5}{3} + \frac{2}{6} \]

\[U = 0.75 < 0.78 \implies 1 \text{ execution per period is guaranteed} \]
RM Scheduling – example 2

Task properties

<table>
<thead>
<tr>
<th>(\tau_i)</th>
<th>(T_i)</th>
<th>(C_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

\[U = \frac{0.5}{2} + \frac{0.5}{3} + \frac{3}{6} = 0.92 > 0.78 \Rightarrow 1 \text{ execution per period is not guaranteed.} \]

However it is feasible.
RM Scheduling – example 3

Task properties

<table>
<thead>
<tr>
<th>τ_i</th>
<th>T_i</th>
<th>C_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2.1</td>
</tr>
</tbody>
</table>

$U = \frac{1}{3} + \frac{1}{4} + \frac{2.1}{6} = 0.93 > 0.78 \implies 1$ execution per period not guaranteed, with deadline miss by τ_3
$U = \frac{1}{2} + \frac{2}{4} = 1$

RM Scheduling – particular case

Harmonic periods
Schedulable iif $U(n) \leq 1$
Schedulability tests for DM

In some cases tasks may have large periods (low frequency) but require a short response time. In these cases we assign a deadline shorter than the period, and the scheduling criteria is the deadline.

In these cases we can also use utilization-based tests.

The adaptation is simple, but the test is very pessimistic.

\[U'(n) = \sum_{i=1}^{n} \frac{C_i}{D_i} \leq n \left(2^n - 1\right) \]

\[\tau_1 \ (C_1=1, T_1=6, D_1=2) \]

\[t=0 \quad t=2 \quad t=6 \]
Response-time analysis

For arbitrary fixed priorities, including RM, DM and others, the response time analysis allow to obtain an exact test (i.e., necessary and sufficient condition) in the following conditions: preemption, synchronous release, independent tasks and $D \leq T$)

Worst-case response time (WCRT) = maximum time interval between arrival and finish instants.

$$R_{wc_i} = \max_k (f_{i,k} - a_{i,k})$$

Schedulability test based on the WCRT

Compute R_{wc_i} \hspace{1cm} \forall_i$

$\forall_i, R_{wc_i} \leq D_i \iff$ Task set is schedulable
The WCRT of a given task occurs when the task is activated at the same time as all other high-priority tasks (**critical instant**)

Response-time analysis

Computing R_{wc_i}

\[\forall i, R_{wc_i} = I_i + C_i \]

\[I_i = \sum_{k \in hp(i)} \left\lceil \frac{R_{wc_i}}{T_k} \right\rceil * C_k \]

Number of times that higher priority task k is activated in the R_{wc_i} time interval

l_i – interference caused by the execution of higher priority tasks
Response-time analysis

The equation is solved iteratively. Stop conditions are:

• **A deadline is violated** \((R_{wc_i} > D_i)\)

• **Convergence** (two successive iterations yield the same result)

 • \(R_{wc_i}(m+1) = R_{wc_i}(m)\)

\[
R_{wc_i}(0) = \sum_{k \in hp(i)} C_k + C_i
\]

......

\[
R_{wc_i}(m+1) = \sum_{k \in hp(i)} \left[\frac{R_{wc_i}(m)}{T_k} \right] \ast C_k + C_i
\]
Response-time analysis

Task properties

<table>
<thead>
<tr>
<th>(\tau_i)</th>
<th>(T_i)</th>
<th>(C_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Critical instant

\(\tau_1 \), \(\tau_2 \), \(\tau_3 \)

\(R_{w_1} \): ?
\(R_{w_2} \): ?
Response-time analysis

Task properties

<table>
<thead>
<tr>
<th>(\tau_i)</th>
<th>(T_i)</th>
<th>(C_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Rwc\(_1\):
\[Rwc_1(0) = C_1 = 0.5 \]

Rwc\(_2\):
\[Rwc_2(0) = C_1 + C_2 = 1 \]
\[Rwc_2(1) = \left[\frac{Rwc_2(0)}{T_1} \right] * C_1 + C_2 = 1 \]
\[Rwc_2 = 1 \]
Response-time analysis

Task properties

<table>
<thead>
<tr>
<th>τ_i</th>
<th>T_i</th>
<th>C_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Critical instant

$t=0$ $t=2$ $t=6$

$Rw_{c3} : ?$
Response-time analysis

Task properties

<table>
<thead>
<tr>
<th>(\tau_i)</th>
<th>(T_i)</th>
<th>(C_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Critical instant

- \(\tau_1 \)
- \(\tau_2 \)
- \(\tau_3 \)

Calculations

Rwc\(_3\):

- \(\text{Rwc}_3(0) = C_1 + C_2 + C_3 = 4 \)
- \(\text{Rwc}_3(1) = \left[\frac{\text{Rwc}_3(0)}{T_1} \right] * C_1 + \left[\frac{\text{Rwc}_3(0)}{T_2} \right] * C_2 + C_3 = 5 \)
- \(\text{Rwc}_3(2) = \left[\frac{\text{Rwc}_3(1)}{T_1} \right] * C_1 + \left[\frac{\text{Rwc}_3(1)}{T_2} \right] * C_2 + C_3 = 5.5 \)
- \(\text{Rwc}_3(3) = \left[\frac{\text{Rwc}_3(2)}{T_1} \right] * C_1 + \left[\frac{\text{Rwc}_3(2)}{T_2} \right] * C_2 + C_3 = 5.5 \)
- \(\text{Rwc}_3 = 5.5 \)
Restrictions to the schedulability tests previously presented

The previous schedulability tests must be modified in the following cases:

• Non-preemption
• Tasks not independent
 • Share mutually exclusive resources
 • Have precedence constrains

• It is also necessary to take into account the overhead of the kernel, because the scheduler, dispatcher and interrupts consume CPU time
Impact of non-preemption

Task properties

<table>
<thead>
<tr>
<th>τ_i</th>
<th>T_i</th>
<th>C_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Executes without preemption

Block and deadline miss
Summary of 5

- **On-line** scheduling with *fixed-priorities*
- The **Rate Monotonic** scheduling policy – schedulability analysis based on utilization
- The **Deadline Monotonic** and arbitrary deadlines scheduling policies
- Response-time analysis